
NASA Contractor Report 195360

Investigation of Advanced Counterrotation
Blade Configuration Concepts for High
Speed Turboprop Systems

Task 8–Cooling Flow/Heat Transfer Analysis
User's Manual

E.J. Hall, D.A. Topp, N.J. Heidegger, and R.A. Delaney
Allison Engine Company
Indianapolis, Indiana

September 1994

Prepared for
Lewis Research Center
Under Contract NAS3–25270

National Aeronautics and
Space Administration

Contents

1 SUMMARY 1

2 INTRODUCTION 3
2.1 Multiple-Block Solution Domain Concepts 4
2.2 Multiple Blade Row Solution Concepts 8
2.3 2-D/3-D Solution Zooming Concepts 14
2.4 Multigrid Convergence Acceleration Concepts 16
2.5 General Solution Procedure Sequence 18
2.6 Consolidated Serial/Parallel Code Capability 21
2.7 Parallelization Strategy . 21

3 ADPAC08 : 3-D EULER/NAVIER-STOKES FLOW SOLVER
OPERATING INSTRUCTIONS 23
3.1 Introduction to ADPAC08 . 23
3.2 General Information Concerning the Operation of the AD-

PAC08 Code . 24
3.3 Con�guring ADPAC08 Maximum Array Dimensions 25
3.4 ADPAC08 Compilation Using Make�le 31
3.5 ADPAC08 Input/Output Files 36
3.6 ADPAC08 Standard Input File Description 38
3.7 ADPAC08 Boundary Data File Description 69
3.8 Mesh File Description . 237
3.9 Body Force File Description 242
3.10 Standard Output File Description 245
3.11 Plot File Description . 245
3.12 Restart File Description . 249
3.13 Convergence File Description 251

i

3.14 Image File Description . 252
3.15 Troubleshooting an ADPAC08 Failure 253

4 RUNNING ADPAC08 IN PARALLEL 259
4.1 Parallel Solution Sequence . 259
4.2 SIXPAC (Block Subdivision) Program 262

4.2.1 SIXPAC Input . 263
4.2.2 casename.sixpac File Contents 263
4.2.3 Restart Files in SIXPAC 266
4.2.4 SIXPAC Output . 266
4.2.5 Running SIXPAC . 267

4.3 BACPAC . 267
4.3.1 BACPAC Input . 268
4.3.2 BACPAC Output . 269

4.4 Parallel ADPAC08 Block/Processor Assignment 269

5 ADPOST POST PROCESSOROPERATING INSTRUCTIONS271
5.1 Introduction to ADPOST . 271
5.2 Con�guring ADPOST Maximum Array Dimensions 272
5.3 Compiling the ADPOST Program 272
5.4 Running the ADPOST Program 273
5.5 Sample Session Using the ADPOST Program 279
5.6 Sample Output File from the ADPOST Program 286

6 STANDARD MESH BLOCK CONFIGURATIONS 295
6.1 Description of Standard Con�gurations 295

7 ROTGRID PROGRAM DESCRIPTION 317
7.1 Con�guring ROTGRID Maximum Array Dimensions 318
7.2 Compiling the ROTGRID Program 318
7.3 Running the ROTGRID Program 319

8 MAKEADGRID PROGRAM DESCRIPTION 321
8.1 Con�guring MAKEADGRID Maximum Array Dimensions . . 321
8.2 Compiling the MAKEADGRID Program 322
8.3 Running the MAKEADGRID Program 323
8.4 Sample Session Using the MAKEADGRID Program 324

ii

9 SETUP PROGRAM DESCRIPTION 327
9.1 Con�guring SETUP Maximum Array Dimensions 327
9.2 Compiling the SETUP Program 328
9.3 Running the SETUP Program 328

10 ADPAC08 INTERACTIVE GRAPHICS DISPLAY 331
10.1 Setting up the Program . 332
10.2 Graphics Window Operation 332
10.3 AGTPLT-LCL Program Description 334

11 ADPAC08 TOOL PROGRAMS DESCRIPTION 337
11.1 ADPERF Tool Program Description 337
11.2 ADSTAT Tool Program Description 338
11.3 AOA2AXI Tool Program Description 339
11.4 PLOT3D Tool Programs Description 339

A ADPAC08 DISTRIBUTION AND DEMONSTRATION IN-
STRUCTIONS 347
A.1 Introduction . 347
A.2 Extracting the Source Files 348
A.3 Compiling the Source Code 349
A.4 Running the Distribution Demonstration Test Cases 350

iii

List of Figures

2.1 ADPAC08 2-D Single Block Mesh Structure Illustration 5
2.2 ADPAC08 2-D Two Block Mesh Structure Illustration 6
2.3 ADPAC08 2-D Multiple Block Mesh Structure Illustration . . 7
2.4 Coupled O-H Grid System for a Turbine Vane Cascade 9
2.5 Computational Domain Communication Scheme for Turbine

Vane O-H Grid System . 10
2.6 Multiple Blade Row Numerical Solution Schemes 11
2.7 2-D Axisymmetric Flow Representation of a Turbomachinery

Blade Row . 15
2.8 Multigrid Mesh Coarsening Strategy and Mesh Index Relation 17

3.1 ADPAC08 Body-Centered Mesh Turbulence Model Nomen-
clature Summary . 44

3.2 ADPAC08 Input Keyword Multigrid Cycle and Time-Marching
Iteration Management Flowchart 56

3.3 2-D Mesh Block Phantom Cell Representation 71
3.4 ADPAC08 3-D Boundary Condition Speci�cation 72
3.5 E�ect of Ordering in Application of Boundary Conditions for

the ADPAC08 Code . 73
3.6 ADPAC08 Boundary Data File Speci�cation Format 75
3.7 ADPAC08 INLETR Boundary Speci�cation Flow Angle Ref-

erence . 180
3.8 ADPAC08 2-D Single Block Mesh Structure Illustration 190
3.9 ADPAC08 Rotational Speed Orientation Illustration 221
3.10 ADPAC08 Mesh Coordinate Reference Description 238
3.11 ADPAC08 Left-Handed Coordinate System Description 239

4.1 Careful block division can preserve levels of multigrid. 264

iv

6.1 Standard Con�guration #1 Geometry and Multiple Block Mesh
Structure . 298

6.2 Standard Con�guration #2 Geometry and Multiple Block Mesh
Structure . 300

6.3 Standard Con�guration #3 Geometry and Multiple Block Mesh
Structure . 302

6.4 Standard Con�guration #4 Geometry and Multiple Block Mesh
Structure . 304

6.5 Standard Con�guration #5 Geometry and Multiple Block Mesh
Structure . 306

6.6 Standard Con�guration #6 Geometry and Multiple Block Mesh
Structure . 308

6.7 Standard Con�guration #7 Geometry and Multiple Block Mesh
Structure . 310

6.8 Standard Con�guration #8 Geometry and Multiple Block Mesh
Structure . 312

6.9 Standard Con�guration #9 Geometry and Multiple Block Mesh
Structure . 314

6.10 Standard Con�guration #10 Geometry and Multiple Block
Mesh Structure . 316

10.1 ADPAC08 Interactive Graphics Display Network Con�gura-
tion Options . 333

10.2 ADPAC08 Interactive Graphics Display Mouse Control 335

A.1 NASA 1.15 Pressure Ratio Fan Test Case 353
A.2 ADPAC08 Convergence History for NASA 1.15 Pressure Ratio

Fan Test Case . 354

v

List of Tables

3.1 Description of input/output �les and UNIX-based �lenames
for ADPAC08 Euler/Navier-Stokes solver 37

NOTATION

A list of the symbols used throughout this document and their de�nitions is
provided below for convenience.

Roman Symbols

e : : : total internal energy
i : : : �rst grid index of numerical solution
j : : : second grid index of numerical solution
k : : : third grid index of numerical solution or thermal conductivity
n : : : rotational speed (revolutions per second) or time step level
r : : : radius or radial coordinate
t : : : time
u : : : velocity in the axial direction
v : : : velocity in the radial direction
w : : : velocity in the circumferential direction
x : : : Cartesian coordinate system coordinate
y : : : Cartesian coordinate system coordinate
z : : : Cartesian coordinate or cylindrical coordinate system axial coordi-

nate
ADPAC : : : Advanced Ducted Propfan Analysis Codes
ADPOST : : : ADPAC post processing program
ASCII : : : American Standard Code for Information Interchange

vi

CFL : : : Courant-Freidrichs-Lewy number (�t=�tmax;stable)
CHGRIDV 2 : : : Ducted propfan grid generation code
D : : : diameter (units of length)
FULLPLOT : : : PostScript x-y plotting program
J : : : advance ratio (J = U=nD)
M : : : Mach number
MAKEADGRID : : : ADPAC multiple-block mesh assembly program
MULAC : : : NASA-Lewis Compressor Mesh Generation Program
N : : : Number of blades
R : : : gas constant or residual or maximum radius
ROTGRID : : : ADPAC mesh rotation program
SDBLIB : : : Scienti�c DataBase Library (binary �le I/O routines)
SETUP : : : ADPAC �le setup program
TIGG3D : : : NASA-Lewis multiple splitter mesh generation program
U : : : Freestream or
ight velocity (units of length/time)
V : : : volume

Greek Symbols

 : : : speci�c heat ratio
� : : : calculation increment
� : : : density
� : : : coe�cient of viscosity

Superscripts

[]n : : : time level or iteration index

Subscripts

[]coarse : : : coarse mesh value
[]fine : : : �ne mesh value
[]i;j;k : : : grid point index of variable
[]max : : : maximum value
[]min : : : minimum value
[]non�dimensional : : : non-dimensional value
[]ref : : : reference value
[]stable : : : value implied by linear stability
[]total : : : total (stagnation) value

vii

Chapter 1

SUMMARY

The primary objective of this study was the development of a time-marching
three-dimensional Euler/Navier-Stokes aerodynamic analysis tool to predict
steady and unsteady compressible transonic
ows about ducted and unducted
propfan propulsion systems employing multiple blade rows. The current
version of the computer codes resulting from this study are referred to as
ADPAC08 (Advanced Ducted Propfan Analysis Codes-Version 8). This re-
port is intended to serve as a computer program user's manual for the AD-
PAC08 code developed under Tasks VII and VIII of NASA Contract NAS3-
25270.

The ADPAC08 program is based on a
exible multiple-block grid dis-
cretization scheme permitting coupled 2-D/3-D mesh block solutions with
application to a wide variety of geometries. For convenience, several stan-
dard mesh block structures are described for turbomachinery applications,
although the code is by no means limited to these con�gurations. Aero-
dynamic calculations are based on a four-stage Runge-Kutta time-marching
�nite volume solution technique with added numerical dissipation. Steady

ow predictions are accelerated by a multigrid procedure. The consolidated
code generated during this study is capable of executing in either a serial or
parallel computing mode from a single source code. Numerous examples are
given in the form of test cases to demonstrate the utility of this approach for
predicting the aerodynamics of modern turbomachinery con�gurations.

1

2 Summary

Chapter 2

INTRODUCTION

This document contains the Computer Program User's Manual for the con-
solidated ADPAC08 (Advanced Ducted Propfan Analysis Codes - Version
8) Euler/Navier-Stokes analysis developed by the Allison Engine Company
under Tasks VII and VIII of NASA Contract NAS3-25270. The objective of
these studies was to develop a three-dimensional time-marching Euler/Navier-
Stokes analysis for aerodynamic/heat transfer analysis of modern turboma-
chinery
ow con�gurations. The analysis is capable of predicting both steady
state and time-dependent
ow�elds using coupled 2-D/3-D solution concepts
(described in detail in Section 1.3). The consolidated code was developed to
be capable of either serial execution or parallel execution on massively par-
allel or workstation cluster computing platforms from a single source. The
serial/parallel execution capability is determined at compilation. Through-
out the rest of this document, the aerodynamic analysis is referred to as
ADPAC08 to signify that it is version 8 of the ADPAC series of codes.

A theoretical development of the ADPAC08 program is outlined in the
Final Report for Task V of NASA Contract NAS3-25270 [1]. Additional in-
formation will be presented in the Final Reports for Tasks VII and VIII of
NASA Contract NAS3-25270 to be published in 1995 and 1994, respectively.
In brief, the program utilizes a �nite-volume, time-marching numerical pro-
cedure in conjunction with a
exible, coupled 2-D/3-D multiple grid block
geometric representation to permit detailed aerodynamic simulations about
complex con�gurations. The analysis has been tested and results veri�ed for
both turbomachinery and non-turbomachinery based applications. The abil-
ity to accurately predict the aerodynamics due to the interactions between

3

4 Multiple-Block Solution Domain Concepts

adjacent blade rows of modern, high-speed turbomachinery was of particular
interest during this program, and therefore, emphasis is given to these types
of calculations throughout the remainder of this document. It should be em-
phasized at this point that although the ADPAC08 program was developed
to analyze the steady and unsteady aerodynamics of high-bypass ducted fans
employing multiple blade rows, the code possesses many features which make
it practical to compute a number of other complicated
ow con�gurations as
well.

2.1 Multiple-Block Solution Domain Concepts

In order to appreciate and utilize the features of the ADPAC08 solution sys-
tem, the concept of a multiple-block grid system must be fully understood.
It is expected that the reader possesses at least some understanding of the
concepts of computational
uid dynamics (CFD), so the use of a numerical
grid to discretize a
ow domain should not be foreign. Many CFD analyses
rely on a single structured ordering of grid points upon which the numerical
solution is performed (the authors are aware of a growing number of unstruc-
tured grid solution techniques as well, but resist the temptation to mention
them in this discussion). Multiple-block grid systems are di�erent only in
that several structured grid systems are used in harmony to generate the
numerical solution. This concept is illustrated graphically in two dimensions
for the
ow through a nozzle in Figures 2.1-2.3.

The grid system in Figure 2.1 employs a single structured ordering, re-
sulting in a single computational space to contend with. The mesh system
in Figure 2.2 is comprised of two, separate structured grid blocks, and con-
sequently, the numerical solution consists of two unique computational do-
mains. In theory, the nozzle
owpath could be subdivided into any number
of domains employing structured grid blocks resulting in an identical num-
ber of computational domains to contend with, as shown in the 20 block
decomposition illustrated in Figure 2.3. The complicating factor in this do-
main decomposition approach is that the numerical solution must provide
a means for the isolated computational domains to communicate with each
other in order to satisfy the conservation laws governing the desired aerody-
namic solution. Hence, as the number of subdomains used to complete the

Multiple-Block Solution Domain Concepts 5

ADPAC 2−D Nozzle Single Block Mesh Structure Illustration

Physical Domain

Computational Domain

i

j

Figure 2.1: ADPAC08 2-D Single Block Mesh Structure Illustration

6 Multiple-Block Solution Domain Concepts

ADPAC 2−D Nozzle Two Block Mesh Structure Illustration

Physical Domain

Computational Domain

i

j
Inter−block communication required
to couple computational domains

Block #1 Block #2

Figure 2.2: ADPAC08 2-D Two Block Mesh Structure Illustration

Multiple-Block Solution Domain Concepts 7

ADPAC 2−D Nozzle Multiple Block Mesh Structure Illustration

Physical Domain

Computational Domain

i

j
Inter−block communication required
to couple computational domains

Block #1

Block #2

Block #3

Block #4

Block #5

Block #6

Block #7

Block #8

Block #9

Block #10 Block #15

Block #14

Block #13

Block #12

Block #11 Block #16

Block #17

Block #18

Block #19

Block #20

Figure 2.3: ADPAC08 2-D Multiple Block Mesh Structure Illustration

8 Multiple Blade Row Solution Concepts

aerodynamic solution grows larger, the number of inter-domain communica-
tion paths increases in a corresponding manner. (It should be noted that
this domain decomposition/communication overhead relationship is also a
key concept in parallel processing for large scale computations, and thus,
the ADPAC08 code possesses a natural domain decomposition division for
parallel processing a�orded by the multiple-block grid data structure.

For the simple nozzle case illustrated in Figure 2.1 it would seem that
there is no real advantage in using a multiple-block grid, and this is probably
true. For more complicated geometries, such as the turbine vane coupled
O-H grid system shown in Figure 2.4 and the corresponding computational
domain communication scheme shown in Figure 2.5, it may not be possible
to generate a single structured grid to encompass the domain of interest
without sacri�cing grid quality, and therefore, a multiple-block grid system
has signi�cant advantages.

The ADPAC08 code utilizes the multiple-block grid concept to the full
extent by permitting an arbitrary number of structured grid blocks with user
speci�able communication paths between blocks. The inter-block communi-
cation paths are implemented as a series of boundary conditions on each
block which, in some cases, communicate
ow information from one block
to another. The advantages of the multiple-block solution concept are ex-
ploited throughout the remainder of this document as a means of treating
complicated geometries, multiple blade row turbomachines of varying blade
number, and to exploit computational enhancements such as multigrid.

2.2 Multiple Blade Row Solution Concepts

Armed with an understanding of the multiple-block mesh solution concept
discussed in the previous section, it is now possible to describe how this
numerical solution technique can be applied to predict complicated
ows.
Speci�cally, this section deals with the prediction of
ows through rotating
machinery with multiple blade rows. Historically, the prediction of three-
dimensional
ows through multistage turbomachinery has been based on one
of three solution schemes. These schemes are brie
y illustrated and described
in Figure 2.6.

Multiple Blade Row Solution Concepts 9

Figure 2.4: Coupled O-H Grid System for a Turbine Vane Cascade

10 Multiple Blade Row Solution Concepts

=====
=====
=====
=====
=====
=====
=====
=====
=====
=====

$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

/////
/////
/////
/////
/////
/////
/////
/////
/////
/////

&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&

====
====
====
====
====
====
====
====
====
====

ADPAC 3−D O−H Turbine Grid Mesh Structure Illustration

Computational Domain

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000
0000

"""
"""
"""
"""
"""
"""
"""
"""
"""
"""
"""

""
""
""
""
""
""
""
""
""
""

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA
AAAA

i

j
k

O−grid cut
Forward H−Grid
O−Grid Connection

Rearward H−Grid
O−Grid Connection

O−Grid Periodic
Boundary

Forward H−Grid
Periodic Boundary

Rearward H−Grid
Periodic Boundary

&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&
&&&&&

///
///

&&&
&&&

000
000

"""
"""

$$$
$$$

AAA
AAA

$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$
$$

Rearward H−Grid
O−Grid Connection

===
===

/////
/////
/////
/////
/////
/////
/////
/////
/////
/////

Block #2
(Forward H−Grid)

Block #3
(Rearward H−Grid)

Block #1
(O−Grid)

Block to Block Communication Patches

Other boundaries (walls,
inflow/outflow, etc.

Figure 2.5: Computational Domain Communication Scheme for Turbine
Vane O-H Grid System

Multiple Blade Row Solution Concepts 11

Average−Passage Simulation Circumferential
Mixing Plane

3−D Rotor/Stator Interaction

Multiple Blade Row Numerical Solution Concepts

/////
/////
/////
/////
/////
/////

////
////
////
////
////
////

Multiple blade passages per blade row

3−D steady solution of entire domain
for each blade row

Solutions have common axisymmetric
flowfield

Adjacent blade rows represented by
blockage/body forces in 3−D solution

Average−passage equation system

Computationally expensive

3−D time−dependent Navier−Stokes
equations

Multiple blade passages for each
blade row or phase−lagged boundaries

Time−dependent coupling of individual
blade passage domains

Computational cost still rather high

Steady Navier Stokes solution

Computational domain limited to
near blade region

Circumferential mixing plane
provides inter−blade row
communication

Lower computational cost

Rotor

Rotor

RotorStator

Stator

Stator

Mixing Plane

Axisymmetric
Representation

Correlation model for mixing terms

Figure 2.6: Multiple Blade Row Numerical Solution Schemes

12 Multiple Blade Row Solution Concepts

The �rst scheme involves predicting the time-resolved unsteady aerody-
namics resulting from the interactions occurring between relatively rotating
blade rows. Examples of this type of calculation are given by Rao and De-
laney [4], Jorgensen and Chima [5], and Rai [9]. This approach requires either
the simulation of multiple blade passages per blade row, or the incorporation
of a phase-lagged boundary condition to account for the di�erences in spatial
periodicity for blade rows with dissimilar blade counts. Calculations of this
type are typically computationally expensive, and are presently impractical
for machines with more than 2-3 blade rows.

The second solution technique is based on the average-passage equation
system developed by Adamczyk [6]. In this approach, separate 3-D solu-
tion domains are de�ned for each blade row which encompasses the overall
domain for the entire turbomachine. The individual solution domains are
speci�c to a particular blade row, although all blade row domains share a
common axisymmetric
ow. In the solution for the
ow through a speci�c
blade passage, adjacent blade rows are represented by their time and space-
averaged blockage, body force, and energy source contributions to the overall

ow. A correlation model is used to represent the time and space-averaged

ow
uctuations representing the interactions between blade rows. The ad-
vantage of the average-passage approach is that the temporally and spatially
averaged equations system reduce the solution to a steady
ow environment;
and, within the accuracy of the correlation model, the solution is represen-
tative of the average aerodynamic condition experienced by a given blade
row under the in
uence of all other blade rows in the machine. The disad-
vantage of the average-passage approach is that the solution complexity and
cost grow rapidly as the number of blade passages increases, and the validity
of the correlation model is as yet unveri�ed.

The third approach for the prediction of
ow through multistage tur-
bomachinery is based on the mixing plane concept. A mixing plane is an
arbitrarily imposed boundary inserted between adjacent blade rows across
which the
ow is \mixed out" circumferentially. This circumferential mixing
approximates the time-averaged condition at the mixing plane and allows
the aerodynamic solution for each blade passage to be performed in a steady

ow environment. The mixing plane concept was recently applied to realistic
turbofan engine con�gurations by Dawes [7]. Flow variables on either side of
the mixing plane are circumferentially averaged and passed to the neighbor-
ing blade row as a means of smearing out the circumferential nonuniformities

Multiple Blade Row Solution Concepts 13

resulting from dissimilar blade counts. The mixing plane concept is a much
more cost-e�ective approach computationally because the
ow is steady, and
the individual blade passage domains are limited to a near-blade region. Un-
fortunately, the accuracy of this approach is clearly questionable under some
circumstances because of the placement of the mixing plane and the loss of
spatial information resulting from the circumferential averaging operator.

The ADPAC08 program possesses features which permit multiple blade
row solutions using either the time-dependent interaction approach or the
mixing plane concept, described above. Average-passage simulations for re-
alistic turbofan engine con�gurations were recently reported under Task IV
of this contract, and further details on this approach can be found in Ref-
erence [8]. ADPAC08 predictions utilizing the time-accurate rotor/stator
interaction technique requires that a su�cient number of blade passages be
represented in each row such that the circumferential distance represented
in each blade row is constant. This limits the blade counts which can be
e�ectively simulated through this technique. For example, for the simple
single-stage calculation suggested in Figure 2.6, if the rotor has 36 blades
and the stator has 48 blades, a time dependent solution would require, as
a minimum, 3 rotor blade passages and 4 stator blade passages to accom-
modate the common circumferential pitch requirement. If the rotor has 35
blades, and the stator has 47 blades, however, then both blade rows would
require that every blade passage be modeled as no simpler reduction in blade
count is possible. This restriction will appear quite often, as turbomachin-
ery designers often do not like to design neighboring blade rows with blade
counts which have a common integer factor. Ultimately, this type of problem
will require the incorporation of a phase-lagged boundary condition which
would permit time-dependent interaction solutions for neighboring blades
using only one blade passage per blade row.

If, instead, a mixing plane type of calculation is desired, then the mul-
tiple block scheme may again be invoked by utilizing a single blade passage
per blade row, where each grid block has a common mating surface with a
neighboring blade row. The only special requirement here is that boundary
condition routines be available to adequately perform the circumferential av-
eraging between blade rows and supply the block-to-block communication of
this information in the multiple-block mesh solution algorithm. Section 3.7
describes the techniques for applying this type of boundary condition.

14 2-D/3-D Solution Zooming Concepts

2.3 2-D/3-D Solution Zooming Concepts

A third unique feature of the ADPAC08 solution system involves the con-
cept of coupling two-dimensional and three-dimensional solution domains to
obtain representative simulations of realistic high bypass ducted fan engine
concepts. A complicating factor in the analysis of
ows through turbofan
engine systems results from the interactions between adjacent blade rows,
and, in the case of a ducted fan, the e�ects of downstream blade rows on the
aerodynamics of the upstream fan rotor. Historically, in the design of mul-
tistage turbomachinery, an axisymmetric representation of the
ow through
a given blade row has been used to e�ectively reduce the complexity of the
overall problems to a manageable level. Similarly, an e�cient approach to
the numerical simulation of downstream blade rows could naturally utilize
an axisymmetric representation of the e�ects of these rows through a two-
dimensional grid system, with blade blockage, body force, and energy terms
representing the axisymmetric averaged aerodynamic in
uence imparted by
the embedded blade row. This concept is illustrated graphically in Figure 2.7
for a representative turbine stage.

A numerical solution of the
ow through the fan rotor is complicated
by the presence of the core stator, bypass stator, and bypass splitter. It
is undesirable to restrict the solution domain to the fan rotor alone as this
approach neglects the potential interactions between the fan rotor and the
downstream geometry. The ADPAC08 program permits coupled solutions
of 3-D and 2-D mesh blocks with embedded blade row blockage, body force,
and energy terms as a means of e�ciently treating these more complicated
con�gurations. Blade force terms may be determined from a separate 3-D
solution, or may be directly speci�ed based on simpler design system analy-
ses. Neighboring 2-D and 3-D mesh blocks are numerically coupled through
a circumferential averaging procedure which attempts to globally satisfy the
conservation of mass, momentum and energy across the solution domain in-
terface. The \dimensional zooming" capability permitted by the 2-D/3-D
mesh coupling scheme is considered a vital asset for the accurate prediction
of the
ow through modern high-speed turbofan engine systems.

2-D/3-D Solution Zooming Concepts 15

2−D Axisymmetric Representation3−D Geometry

2−D Axisymmetric Blade Row Representation

3−D Computational
Domain

2−D Axisymmetric Representation
of Stator Blade Row − Includes the
Effects of Blockage, Body Forces and
EnergySources

Stator

Rotor

Stator

Rotor

Figure 2.7: 2-D Axisymmetric Flow Representation of a Turbomachinery
Blade Row

16 Multigrid Convergence Acceleration Concepts

2.4 Multigrid Convergence Acceleration Con-

cepts

For completeness, a brief section is included here to discuss the multigrid con-
vergence acceleration solution technique incorporated into the ADPAC08 code.
Multigrid (please do not confuse this with a multiple-block grid!) is a nu-
merical solution technique which attempts to accelerate the convergence of
an iterative process (such as a steady
ow prediction using a time-marching
scheme) by computing corrections to the solution on coarser meshes and prop-
agating these changes to the �ne mesh through interpolation. This operation
may be recursively applied to several coarsenings of the original mesh to ef-
fectively enhance the overall convergence. Coarse meshes are derived from
the preceding �ner mesh by eliminating every other mesh line in each coor-
dinate direction as shown in Figure 2.8. As a result, the number of multigrid
levels (coarse mesh divisions) is controlled by the mesh size, and, in the case
of the ADPAC08 code, by the mesh indices of the boundary patches used
to de�ne the boundary conditions on a given mesh block (see Figure 2.8).
These restrictions suggest that mesh blocks should be constructed such that
the internal boundaries and overall size coincide with numbers which are
compatible with the multigrid solution procedure (i.e., the mesh size should
be 1 greater than any number which can be divided by 2 several times and
remain whole numbers; e.g. 9, 17, 33, 65 etc.) Further details on the ap-
plication of the ADPAC08 multigrid scheme are given in Section 3.6 and in
Reference [1].

A second multigrid concept which should be discussed is the so-called
\full" multigrid startup procedure. The \full" multigrid method is used to
start up a solution by initiating the calculation on a coarse mesh, performing
several time-marching iterations on that mesh (which, by the way could be
multigrid iterations if successively coarser meshes are available), and then
interpolating the solution at that point to the next �ner mesh, and repeating
the entire process until the �nest mesh level is reached. The intent here is
to generate a reasonably approximate solution on the coarser meshes before
undergoing the expense of the �ne mesh multigrid cycles. Again, the \full"
multigrid technique only applies to starting up a solution, and therefore, it is
not normally advisable to utilize this scheme when the solution is restarted
from a previous solution as the information provided by the restart data will

Multigrid Convergence Acceleration Concepts 17

Multigrid Algorithm Mesh Level Description

Fine Mesh
Level 1

Coarse Mesh
Level 2

Coarse Mesh
Level 3

Every other mesh line removed to define next mesh level

Grid lines defining mesh boundaries and internal boundaries (blade leading edges, trailing edges, etc.)
must be consistent with the mesh coarsening process (cannot remove a mesh line defining a boundary
for the given coordinate direction)

Figure 2.8: Multigrid Mesh Coarsening Strategy and Mesh Index Relation

18 General Solution Procedure Sequence

likely be lost in the coarse mesh initialization.

2.5 General Solution Procedure Sequence

The ADPAC08 code is distributed as a compressed tar �le which must be
processed before the code may be utilized. The instructions in Appendix A
describe how to obtain the distribution �le, and extract the necessary data
to run the code. This operation is typically required only once when the
initial distribution is received. Once the source �les have been extracted, the
sequence of tasks listed below are typical of the events required to perform
a successful analysis using the ADPAC08 code.

Step 1.) De�ne the problem:

This step normally involves selecting the geometry and
ow conditions,
and de�ning which speci�c results are desired from the analysis.The de�ni-
tion of the problem must involve specifying whether steady state or time-
dependent data are required, whether an inviscid calculation is su�cient,
or whether a viscous
ow solution is required, and some idea of the rela-
tive merits of solution accuracy versus solution cost (CPU time) must be
considered.

Step 2.) De�ne the geometry and
ow domain:

Typically, geometric features such as airfoils, ducts, and
owpath endwalls
are required to geometrically de�ne a given problem. The solution domain
may be chosen to include the external
ow, internal engine passage
ows,
and/or leakage
ows. The
ow domain is normally de�ned large enough such
that the region of interest is far enough away from the external boundaries
of the problem to ensure that the solution is not unduly in
uenced by the
external boundary conditions.

Step 3.) De�ne a block structure:

Once the geometry and solution domain has been numerically de�ned, the
implementation of the solution mesh structure must be considered. This pro-
cess begins with a determination of the domain block structure, if and when
more than one mesh block is required for a given solution. The possibility of
incorporating 2-D mesh blocks should be considered whenever possible due
to the computational savings a�orded by this approach (see Section 2.3).

General Solution Procedure Sequence 19

For convenience, several standard block structures for turbomachinery ge-
ometries have been constructed and will be discussed later in this document
(see Chapter 5). This should not discourage users from developing their own
block structures should speci�c needs be unresolved by the standard block
structures.

Step 4.) Generate a numerical grid for the domain of in-
terest:

Most of the standard grid block structures de�ned in this document can
be adequately handled through either the TIGG3D [15] or the CHGRIDV2
[2] grid generation programs. Other grid generation programs may be equally
useful, and a conversion program calledMAKEADGRID (described in Chap-
ter 7) is included to convert non-standard meshes into ADPAC08 format.

Step 5.) Generate a standard input �le:

The standard input �le controls operations speci�c to a particular run
of the ADPAC08 code. Options such as the number of iterations, damping
parameters, and input/output control of the code execution may all be gov-
erned by the values speci�ed in the standard input �le. For the standard
block structures described above, a program called SETUP (see Chapter 8)
is provided which will interactively query the user about the desired run for
one of the standard block con�gurations, and construct an appropriate input
�le.

Step 6.) Generate a boundary data �le:

The boundary data �le controls the application of boundary conditions
on the grid block structure provided to the
ow code. The boundary data
speci�cations are speci�c to the mesh being used in a given calculation. For
the standard block structures described above, a program called SETUP
(see Chapter 8) is provided which will interactively query the user about the
desired run for one of the standard block con�gurations, and construct an
appropriate boundary data �le. For other block con�gurations, the user must
construct the boundary data �le by hand according to the format described
in Section 3.7.

Step 7.) Run ADPAC08 to predict the aerodynamics:

Chapter 3 is available to describe the commands necessary to perform
this task. A sample test case is also completely outlined in Appendix A. In

20 General Solution Procedure Sequence

many cases, a given calculation will involve several applications of the AD-
PAC08 code, restarted from the previous calculation as a means of breaking
up a large problem into several shorter calculations.

Step 8.) Plot and process the results:

An interactive post processing program called ADPOST is provided to
handle tasks such as mass-averaging
ow variables to simplify the interpre-
tation of the computed results (see Chapter 4). Output data is also provided
for widely available plotting programs such as PLOT3D [11] and FAST [13].

A condensed description of the commands involved in the steps described
above beginning with extracting the source code from the distribution, com-
piling the codes, setting up a case, and running a case, is given in the Ap-
pendix. Separate sections are provided in the chapters which follow to de-
scribe in detail the basis and operation of the codes used in the steps above.

It is worthwhile mentioning that the development and application of the
codes described in this manual were performed on Unix-based computers.
All �les are stored in machine-independent format. Small �les utilize stan-
dard ASCII format, while larger �les, which bene�t from some type of bi-
nary storage format, are based on the Scienti�c DataBase Library (SDBLIB)
format [10]. The SDBLIB format utilizes machine-dependent input/output
routines which permit machine independence of the binary data �le. The
SDBLIB routines are under development at the NASA Lewis Research Cen-
ter.

Most of the plotting and graphical postprocessing of the solutions was
performed on graphics workstations. The PLOT3D [11], and FAST [13]
graphics software packages developed at NASA Ames Research Center were
extensively used for this purpose, and data �les for these plotting packages
are generated automatically. These data �les are written in what is known
as PLOT3D multiple-grid format. (See ADPAC08 File Description, Section
3.5).

General Solution Procedure Sequence 21

2.6 Consolidated Serial/Parallel Code Capa-

bility

One of the practical di�culties of performing CFD analyses is �nding suf-
�cient computational resources to allow for adequate modeling of complex
geometries. Oftentimes, workstations are not large enough, and supercom-
puters have either long queues, high costs, or both. Clearly, a means of
circumventing these di�culties without giving up the
exibility of the CFD
code or the complexity of the model would be welcome. One possibility is
to write a code which could run in parallel across a number of processors,
with each one having only a piece of the problem. Then, a number of lesser
machines could be harnessed together to make a virtual supercomputer.

The most likely candidates for creating such a machine are the worksta-
tions which are fully loaded during the day, but sit idle at night. Tremendous
power could be made available at no extra cost. There are also massively
parallel computers available on the market designed speci�cally for such ap-
plications. These machines are aiming at order of magnitude improvements
over present supercomputers.

The problem of course, lies in the software. Parallelization is today about
as painful as vectorization was a decade ago. There is no standard parallel
syntax, and no compiler to automatically parallelize a code. It is di�cult
to write a parallel code which is platform independent. What makes things
worse is that there is no clear leader in the parallel computer industry, as
there has been in the supercomputer industry.

The objective behind the development of the consolidatedADPAC08 code
described in this manual was to create a platform independent parallel code.
The intent was to design a parallel code which looks and feels like a tradi-
tional code, capable of running on networks of workstations, on massively
parallel computers, or on the traditional supercomputer. User e�ort was to
be minimized by creating simple procedures to migrate a serial problem into
the parallel environment and back again.

2.7 Parallelization Strategy

The ADPAC08 code has some innate advantages for parallelization: it is
an explicit, multi-block solver with a very
exible implementation of the

22 General Solution Procedure Sequence

boundary conditions. This presents two viable options for parallelization:
parallelize the internal solver (the \�ne-grained" approach), or parallelize
only the boundary conditions (the \coarse-grained" approach). The �ne-
grained approach has the advantage that block size is not limited by processor
size. This is the approach frequently taken when writing code for massively
parallel computers, which are typically made up of many small processors.
The coarse-grained approach is favored when writing code for clusters of
workstations, or other machines with a few large processors. The dilemma
is that a parallel ADPAC08 needs to run well on both kinds of machines.

The �ne grained approach is especially enticing for explicit solvers. Ex-
plicit codes have proven to be the easiest to parallelize because there is little
data dependency between points. For a single block explicit solver, �ne-
grained parallelization is the clear choice. However, with a multiblock solver,
the boundary conditions must be parallelized in addition to the interior point
solver, and that can add a lot of programming e�ort. The coarse-grained ap-
proach is admittedly easier for multi-block solvers, but what if the blocks
are too big for the processors? The simplest answer is to require the user to
block out the problem so that it �ts on the chosen machine. This satis�es the
programmer, but the user is faced with a tedious chore. If the user decides
to run on a di�erent machine, then the job may have to be redone. The pain
saved by the programmer is passed directly to the user.

A compromise position was reached for parallel ADPAC08 code. The
coarse-grained approach is used, but supplemental tools are provided to au-
tomatically generate new grid blocks and boundary conditions for a user-
speci�ed topography. In this way, the parallel portions of the code are iso-
lated to a few routines within ADPAC08 , and the user is not unduly bur-
dened with architecture considerations. Details of running the ADPAC08 in
parallel are given in a later chapter.

Chapter 3

ADPAC08 : 3-D
EULER/NAVIER-STOKES
FLOW SOLVER OPERATING
INSTRUCTIONS

3.1 Introduction to ADPAC08

This chapter contains the operating instructions for the ADPAC08 time-
dependent multiple grid block 3-D Euler/Navier-Stokes aerodynamic analy-
sis. These instructions include some general information covering executing
the code, de�ning array limits, compiling the
ow solver, setting up input
�les, running the code, and examining output data. The ADPAC08
ow
solver source programs are written in FORTRAN 77, and have been used suc-
cessfully on Cray UNICOS and IBM VM/CMS mainframe computer systems
as well as IBM AIX Operating System and Silicon Graphics 4D workstations
using a UNIX operating system.

23

24 ADPAC08 General Information

3.2 General Information Concerning the Op-

eration of the ADPAC08 Code

Approximate computational storage and CPU requirements for the AD-
PAC08 code can be conservatively estimated from the following formulas:

CPU sec � 1:0x10�4(# grid points)(# iterations)

Memory MW � 6:8x10�5(# grid points)

These formulas are valid for a Cray-YMP computer operating under the UNI-
COS environment and the cf77 compiler, version 6.0.11 and above. The times
reported are for a single processor only, and are not indicative of any paral-
lelization available through the Cray autotasking or microtasking facilities.
Without multigrid, steady inviscid
ow calculations normally require approx-
imately 2000 iterations to reduce the maximum residual by three orders of
magnitude (103) which is normally an acceptable level of convergence for
most calculations. Viscous
ow calculations generally require 3000 or more
iterations to converge. When multigrid is used, the number of iterations
required to obtain a converged solution is often one third to one fourth the
number of iterations required for a non-multigrid calculation. Convergence
for a viscous
ow case is generally less well behaved than a corresponding
inviscid
ow calculation, and in many cases, it is not possible to reduce the
maximum residual by three orders of magnitude due to oscillations resulting
from vortex shedding, shear layers, etc. A determination of convergence for
a viscous
ow case must often be based on observing the mass
ow rate or
other global parameter, and terminating the calculation when these variables
no longer change. The number of iterations required for an unsteady
ow
calculation is highly case-dependent, and may be based on mesh spacing,
overall time-period, complexity of the
ow, etc.

The ADPAC08 program produces output �les suitable for plotting using
the PLOT3D [11], SURF [12], and FAST [13] graphics software packages
developed at the NASA Ames Research Center. PLOT3D format data �les
are written for both absolute and relative
ows (see Chapter 2 for a descrip-
tion of the PLOT3D format). The user may also elect to have additional
PLOT3D absolute
ow data �les output at constant iteration intervals dur-
ing the course of the solution. These �les may be used as instantaneous
ow
\snapshots" of an unsteady
ow prediction.

Con�guring ADPAC08 Maximum Array Dimensions 25

3.3 Con�guring ADPAC08 Maximum Array

Dimensions

The �rst step required before attempting to compile and run the ADPAC08 pro-
gram is to set the maximum array size required for the analysis prior to the
compilation process. The maximum array size will ultimately determine the
largest problem (in terms of total number of mesh points) which can be run
with the code. The larger the array limits, the larger the number of grid
points which may be used. Unfortunately, setting larger array limits also
increases the total amount of memory required by the program, and hence,
can impede the execution of the code on memory-limited computing systems.
Ideally, the code should be dimensioned just large enough to �t the problem
at hand. It should be mentioned that storage requirements are dependent
on whether the multigrid convergence acceleration technique is used or not.
This dependency is explained in more detail in the paragraphs which follow.
Approximate total computational storage and CPU requirements can be es-
timated for the ADPAC08 aerodynamic analysis from the formulas listed in
Section 3.2.

Array dimensions are speci�ed in the ADPAC08 program by a set of
FORTRAN PARAMETER statements. The array limits are speci�ed in
the source code �le parameter.inc. A sample parameter.inc �le is given
below:

PARAMETER(NBMAX = 10)

PARAMETER(NRA3D = 250000)

PARAMETER(NBL2D = 20000)

PARAMETER(NRA1D = 1000)

PARAMETER(NBCPBL = 15)

PARAMETER(NRAINT = 4000)

PARAMETER(NBFRA = 12000)

PARAMETER(LGRAFX = 4000)

PARAMETER(NSYST = 1)

PARAMETER(NBFFILE= 10)

PARAMETER(NBCNT1 = 1000)

Each statement in the parameter.inc �le is ultimately embedded in every

26 Con�guring ADPAC08 Maximum Array Dimensions

subroutine through a FORTRAN include statement.
During execution, the ADPAC08 program automatically checks to make

sure enough storage is available for all the blocks and issues a fatal error
message if an array size is exceeded.

Before proceeding with a description of the various parameter variables,
it should be mentioned that a computational tool is available called ADSTAT
which will read in an ADPAC08 ready mesh �le and determine the required
parameter sizes for either a multigrid or non-multigrid run. The ADSTAT
program is described in more detail in Chapter 10.

The various PARAMETER variables utilized in the parameter.inc �le
are described below.

NBMAX
The parameter NBMAX de�nes the maximum number of grid blocks per-

mitted during execution of the ADPAC08 multiple block solver. This number
must be large enough to include every level of coarse mesh blocks created
during a multigrid run. The ADPAC08 code exploits the multiple block mesh
structure during multigrid runs by creating and storing coarse mesh blocks
from the corresponding �ne mesh blocks. In other words, if it is intended to
run a 5 block mesh with 3 levels of multigrid, then the parameter NBMAX
must be at least 15.

NRA3D
The parameterNRA3D de�nes the maximum number of computational cells

permitted for the �nite volume time-marching algorithm. This parameter
de�nes the maximum total number of mesh points (including multigrid coarse
meshes, when applicable) which are permitted during an ADPAC08 run. The
minimum value for the NRA3D parameter for a given mesh system may be
calculated as follows:

NRA3D �
m=NBLKSX

m=1

[(IMX)m + 1][(JMX)m + 1][(KMX)m + 1]

where (IMX)m, (JMX)m, and (KMX)m indicate the number of mesh
points in the i, j, and k mesh coordinate directions, respectively, for mesh
block m, and NBLKS is the total number of grid blocks. Sample calcula-
tions of the minimum value for the NRA3D parameter for a multiple block
mesh are provided below.

Con�guring ADPAC08 Maximum Array Dimensions 27

Suppose we intend to perform a solution on a mesh consisting of 3 mesh
blocks with 49x17x17, 25x17x17, and 129x33x49 mesh points, respectively.
For a non-multigrid calculation, the total number of mesh blocks is simply
3, and the minimum value for parameter NRA3D may be computed as:

NRA3D = (49 + 1)(17 + 1)(17 + 1) + (25 + 1)(17 + 1)(17 + 1)

+(129 + 1)(33 + 1)(49 + 1) = 245; 624

If, using the same mesh system, it is desired to employ 3 levels of multigrid,
additional storage must also be allocated for the coarse mesh systems, and
the minimum value for parameter NRA3D must be recomputed as:

(NRA3D)1 = (49 + 1)(17 + 1)(17 + 1) + (25 + 1)(17 + 1)(17 + 1)

+(129 + 1)(33 + 1)(49 + 1) = 245; 624

(NRA3D)2 = (25 + 1)(9 + 1)(9 + 1) + (13 + 1)(9 + 1)(9 + 1)

+(65 + 1)(17 + 1)(25 + 1) = 34; 888

(NRA3D)3 = (13 + 1)(5 + 1)(5 + 1) + (7 + 1)(5 + 1)(5 + 1)

+(33 + 1)(9 + 1)(13 + 1) = 5; 552

NRA3D = (NRA3D)1 + (NRA3D)2 + (NRA3D)3 = 286; 064

The requirement that the parameter variable NRA3D (and others) be
based on array sizes 1 element larger than the grid dimensions results from
the use of phantom points outside the computational domain to impose the
numerical boundary conditions.

NBL2D
The parameterNBL2D is used to de�ne the size of the temporary 2-D arrays

utilized during the advancement of the time-marching algorithm for a given
mesh block. As such, the parameter is based on the largest single dimension
of any mesh block (2-D or 3-D) and may be determined by the following
formula:

NBL2D � (maxm=1;NBLKS[(IMX)m + 1; (JMX)m + 1; (KMX)m + 1])2

where the variables IMX; JMX;KMX;NBLKS are de�ned in the section
describing NRA3D above.

28 Con�guring ADPAC08 Maximum Array Dimensions

Returning to the example mesh system utilized in the description of the
parameter NRA3D, the minimum value for the parameter NBL2D may be
computed as:

NBL2D = (129 + 1)2 = 16900

This value is unchanged regardless of the number of multigrid levels since
coarser meshes always result in smaller mesh sizes.

NRA1D
The parameter NRA1D is used to de�ne the size of several 1-D arrays

used to do various bookkeeping operations during the execution of the AD-
PAC08 code. As such, the parameter is based on the sum of the maximum
single dimension of all mesh blocks in the following manner:

NRA1D �
m=NBLKSX

m=1

max[(IMX)m + 1; (JMX)m + 1; (KMX)m + 1]

Returning to the example mesh system utilized in the description of the
parameter NRA3D, the minimum value for the parameter NRA1D for a
non-multigrid run be determined as:

NRA1D = (49 + 1) + (25 + 1) + (129 + 1) = 206

and for a 3 level multigrid run as:

(NRA1D)1 = (49 + 1) + (25 + 1) + (129 + 1) = 206

(NRA1D)2 = (25 + 1) + (13 + 1) + (65 + 1) = 106

(NRA1D)3 = (13 + 1) + (7 + 1) + (33 + 1) = 56

NRA1D = (NRA1D)1 + (NRA1D)2 + (NRA1D)3 = 368

NBCPBL
The parameter NBCPBL is used to de�ne the size of the arrays used to

store the boundary condition speci�cations for a given ADPAC08 run. Since
the number of boundary conditions normally scales according to the number
of mesh blocks (as a minimum, 6 boundary conditions are required for each
mesh block, see Section 3.7), the parameter NBCPBL implies the maxi-
mum number of boundary conditions per block, and the overall number of

Con�guring ADPAC08 Maximum Array Dimensions 29

boundary conditions is determined by multiplying the parametersNBMAX
and NBCPBL. It should be noted that a single block can, in fact, possess
more than NBCPBL boundary condition speci�cations as long as the total
number of boundary condition speci�cations for the entire problem does not
exceed NBMAX �NBCPBL.
NRAINT
The parameter NRAINT is used to de�ne the size of the temporary arrays

used to store interpolation data for the non-contiguous mesh patching bound-
ary condition speci�cation PINT, described in Section 3.7. The PINT spec-
i�cation controls the numerical coupling between two mesh blocks possessing
non-contiguous mesh boundaries which lie on a common surface. The nu-
merical scheme utilizes a rather simple interpolation scheme based on an
electrical circuit analogy, and stores the \nearest neighbors" for each mesh
point to avoid the expense of constantly searching for the interpolation sten-
cil between the two mesh surfaces. Determining the value required for the
parameter NRAINT is normally performed by summing up all of the mesh
elements involved in all of the PINT speci�cations (including coarse mesh
speci�cations from a multigrid run). For example, if two meshes with non-
contiguous mesh boundaries of 49x33 and 25x17 are being updated using the
PINT speci�cation, then the minimum value for the NRAINT parameter
for a nonmultigrid run would be determined as:

NRAINT = (49� 1)(33� 1) + (25� 1)(17� 1) = 1920

In this case, the NRAINT parameter is based on the mesh indices minus
one, since the storage in the �nite volume solver is actually based on the num-
ber of mesh cells, not the number of mesh points, even though the boundary
speci�cation is based on actual mesh indices. The equivalent value for a run
utilizing 3 levels of multigrid would be:

(NRAINT)1 = (49� 1)(33� 1) + (25� 1)(17� 1) = 1920

(NRAINT)2 = (25� 1)(17� 1) + (13� 1)(9� 1) = 480

(NRAINT)3 = (13� 1)(9� 1) + (7� 1)(5� 1) = 120

NRAINT = (NRAINT)1 + (NRAINT)2 + (NRAINT)3 = 2520

Naturally, if additional PINT speci�cations are employed then the con-
tributions from these speci�cations must also be added to the total.

30 Con�guring ADPAC08 Maximum Array Dimensions

NBFRA
The parameter NBFRA is used to de�ne the size of the 2-D arrays used to

store the blade element blockage, body force, and energy source terms for
the 2-D block solution scheme. Since these arrays are utilized for any 2-D
mesh block regardless of whether blade element blockage and source terms
are utilized, the arrays must be dimensioned large enough to store all the
elements of all of the 2-D mesh blocks (including coarse meshes for multigrid
runs) much in the manner thatNRA3D is used to store all of the elements of
all of the mesh blocks. Mathematically, the minimum value for the parameter
NBFRA may be calculated as:

NBFRA �
m=NBLKSX

m=1

[(IMX)m + 1][(JMX)m + 1]L2D(m)

where the variables IMX; JMX;KMX and NBLKS are described in the
de�nition of parameter NRA3D, above. The variable L2D(m) is a trigger to
indicate whether the grid blockm is 2-D (1) or 3-D (0). For example, suppose
a multiple block solution is being performed for a mesh system comprised of
two 2-D meshes sized 49x25x1 and 33x17x1 and a 3-D mesh sized 33x25x29.
For a non-multigrid run, the minimum value for the parameter NBFRA
may be calculated as:

NBFRA = (49+1)(25+1)(1)+(33+1)(17+1)(1)+(129+1)(25+1)(0) = 1912

and for a run employing 3 levels of multigrid as:

(NBFRA)1 = (49+1)(25+1)(1)+(33+1)(17+1)(1)+(129+1)(25+1)(0) = 1912

(NBFRA)2 = (25+1)(13+1)(1)+(17+1)(9+1)(1)+(65+1)(13+1)(0) = 544

(NBFRA)3 = (13+1)(7+1)(1)+(9+1)(5+1)(1)+(33+1)(7+1)(0) = 172

NBFRA = (NBFRA)1 + (NBFRA)2 + (NBFRA)3 = 2628

LGRAFX
The parameter LGRAFX is used to de�ne the size of the temporary 3-D

arrays used for the run-time graphics display option available in the AD-
PAC08 code. If the run-time graphics option is employed, then the param-
eter LGRAFX can be determined in the same manner as the parameter

ADPAC08 Compilation Using Make�le 31

NRA3D. If the run-time graphics option is not employed, then the param-
eter LGRAFX should be set to 1, resulting in a considerable savings in
computational storage.

NSYST
The parameter NSYST is used to de�ne the size of a character array which

stores system call commands during the execution of the boundary condition
routine SYSTEM (see Section 3.7). Normally, this is not used and may be
set to a value of 1 to minimize storage. If the SYSTEM boundary routine
is used, then NSYST must be at least as large as the number of SYSTEM
boundary speci�cations in the ADPAC08 boundary data �le.

NBFFILE
The parameter NBFFILE is used to de�ne the size of a character array

which stores body force �le names speci�ed by the input variable BFFILE
(see Section 3.6). Normally, this is not used and may be set to a value of 1 to
minimize storage. If the BFFILE input variable is used, then NBFFILE
must be at least as large as NBMAX.

NBCNT1
The parameter NBFFILE is used to de�ne the size of the arrays used to

save the interpolation stencils used in the BCINT1 and BCINTM non-
aligned mesh boundary coupling schemes. In an e�ort to computational and
communication e�ciency, the interpolation stencils used to update the non-
aligned boundaries in these boundary condition routines are only calculated
on the �rst step, and are subsequently saved to eliminate any redundant
calculation. The NBCNT1 parameter must be at least as large as the sum
of the total number of points along allBCINT1 and BCINTM non-aligned
boundary patches. IfBCNT1 is set to 1, then the interpolation stencil saving
feature is disabled, and the interpolation stencil is recalculated at every time
step.

3.4 ADPAC08 Compilation Using Make�le

Compilation of the ADPAC08 source code into an executable form is han-
dled through a UNIX-based Make�le facility. A Make�le is included with
the standard distribution which permits automatic compilation of the code

32 ADPAC08 Compilation Using Make�le

for several operational capabilities (both serial and parallel) and computer
systems. The format of the Make�le compiling command is described below.

Several items should be mentioned prior to detailed discussion on the
actual Make�le utilities. Section 3.5 describes the format of the binary �les
using the Scienti�c Database Library developed at NASA-Lewis [10]. The
original version of the Scienti�c Database Library was found to be rather
slow on some machines, and an equivalent limited capability C-based library
was developed to accelerate the I/O processing in the code. This library is
referred to as CSDB, and separate options for utilizing the CSDB library
are included in the Make�le. In addition, the consolidated code is capable
of both serial and parallel operation depending on the Make�le operation
selected.

In the directory containing the FORTRAN source of the ADPAC08 code,
compilation is performed by executing the command:

make option

The make command is standard on UNIX systems and automatically
interrogates the �le Make�le for instructions on how to perform the compi-
lation. The option argument may be any of the variables listed below:

No argument - same as link below.

help This option lists and describes all available make�le options. No exe-
cutable is created.

link This is the standard UNIX system compilation for the serial version of the
ADPAC08 code. All non-standard programming constructs are avoided
(such as graphics, or multi-processor features). This option will deliver
a working executable on most UNIX systems which support standard
naming conventions (f77 as the standard compiler, etc.). The compilation
includes basic compiler optimization (f77 -O). The executable name is
simply adpac.

csdb This is the same as link above, except that the C-based scienti�c database
libarary is linked instead of the standard scienti�c database libarary
(which is thought to be slower). Prior to performing this compilation,
the appropriate make command must be issued in the CSDB directory to
assemble the CSDB library for the local machine. The executable name
is simply adpac.

ADPAC08 Compilation Using Make�le 33

parallel This is the standard UNIX system compilation for the parallel version
of the ADPAC08 code. The standard APPL message passing library
is incorporated, and therefore creation of this executable requires that a
make has been issued in the APPL directory on the current machine. The
parallel code may only be executed using the APPL compute function with
a corresponding APPL procdef �le. Prior to performing this compilation,
the appropriate make command must be issued in the APPL directory to
assemble the APPL library for the local machine. The executable name
is simply adpacp.

parallel csdb This is the same as parallel above, except that the C-based scienti�c
database libarary is linked instead of the standard scienti�c database
libarary (which is thought to be slower). Prior to performing this compi-
lation, the appropriate make command must be issued in the CSDB and
APPL directories to assemble the CSDB and APPL libraries for the local
machine. The executable name is simply adpacp.

pfa This option is used on Silicon Graphics computers supporting the Power
FORTRAN compiler option. Power FORTRAN is a Silicon Graphics
product which does automatic multiprocessor compilation and is there-
fore not related to the ADPAC08 message-passing parallelization strat-
egy. The pfa compiled code is therefore still operated as a serial code,
although may execute on multiple processors for Silicon Graphics work-
stations. The number of processors used is set by the NUM THREADS
environment variable. The compilation includes basic compiler optimiza-
tion (f77 -O). The executable name is simply adpac.

csdb pfa This option is the same as pfa above, except that the C-based scienti�c
database libarary is linked instead of the standard scienti�c database
libarary (which is thought to be slower). Prior to performing this com-
pilation, the appropriate make command must be issued in the CSDB
directory to assemble the CSDB library for the local machine. The exe-
cutable name is simply adpac.

graphics This option compiles ADPAC08 with the necessary routines needed to
permit interactive graphics between network connected Silicon Graphics
workstations. This option will only work when compiling on a Silicon
Graphics workstation with IRIX operating system 4.0.1 or above. The full
Silicon Graphics shared graphics libraries and X-windows system graphics
libraries must be installed on the compiling workstation in order for this

34 ADPAC08 Compilation Using Make�le

option to work. This feature is not recommended as it generally decreases
performance and other visualization techniques are likely to produce more
desirable results. The executable name is simply adpac.

csdb graphics This option is the same as graphics above, except that the C-based scien-
ti�c database libarary is linked instead of the standard scienti�c database
libarary (which is thought to be slower). Prior to performing this com-
pilation, the appropriate make command must be issued in the CSDB
directory to assemble the CSDB library for the local machine. The exe-
cutable name is simply adpac.

dbx This option is used for generating an executable version of the serial
code which is compatible with the standard UNIX dbx-based debugging
facility. This should work on any standard UNIX machine which supports
dbx (Note: the code will run much more slowly when compiled in this
fashion.) This option is used mainly for code development or debugging.
The executable name is simply adpac.dbx.

cray This option is utilized when compiling the standard code on a Cray com-
puter (implies a serial code). For best performance, the aggressive opti-
mization option of the Cray compiler has been invoked (cf77 -Zv -Wf\-o
aggress"). The executable name is simply adpac.cray.

cray dbx This option is used for generating an executable version of the code which
is compatible with the Cray cdbx debugging facility. (Note: the code will
run much more slowly when compiled in this fashion.) This option is
used mainly for code development or debugging. The executable name is
simply adpac.cray.dbx.

aix This option is used when compiling the standard serial code on an IBM
RS-6000 workstation running the AIX operating system. The executable
name is simply adpac.aix.

aix csdb This option is identical to aix above, except that the C-based scienti�c
database libarary is linked instead of the standard scienti�c database
libarary (which is thought to be slower). Prior to performing this com-
pilation, the appropriate make command must be issued in the CSDB
directory to assemble the CSDB library for the local machine. The exe-
cutable name is simply adpac.aix.

aix dbx This option is used for generating an executable version of the code which
is compatible with the IBM AIX dbx debugging facility. (Note: the code

ADPAC08 Compilation Using Make�le 35

will run much more slowly when compiled in this fashion.) This option
is used mainly for code development or debugging. The executable name
is simply adpac.aix.dbx.

aix parallel This is the standard IBM RS-6000 AIX UNIX system compilation for
the parallel version of the ADPAC08 code. The standard APPL message
passing library is incorporated, and therefore creation of this executable
requires that a make has been issued in the APPL directory on the cur-
rent machine. The parallel code may only be executed using the APPL
compute function with a corresponding APPL procdef �le. Prior to per-
forming this compilation, the appropriate make command must be issued
in the APPL directory to assemble the APPL library for the local ma-
chine. The executable name is simply adpacp.aix.

ncube This is the standard nCUBE 2 system compilation for the parallel version
of the ADPAC08 code. The nCUBE version of the APPL message passing
library is incorporated, and therefore creation of this executable requires
that a make has been issued in the APPL directory on the current ma-
chine. The parallel code may only be executed using the APPL compute
function with a corresponding APPL procdef �le. Prior to performing
this compilation, the appropriate make command must be issued in the
APPL directory to assemble the APPL library for the local machine. The
executable name is simply adpacp.ncube.

ncube csdb This option is identical to ncube above, except that the C-based scien-
ti�c database libarary is linked instead of the standard scienti�c database
libarary (which is thought to be slower). Prior to performing this compi-
lation, the appropriate make command must be issued in the CSDB and
APPL directories to assemble the CSDB and APPL libraries for the local
machine. The executable name is simply adpacp.ncube.

At the completion of the compilation process on any system, an exe-
cutable version of the code is written in the source directory (see Appendix
A for an application of the compilation and execution processes for a sample
test case).

36 ADPAC08 Input/Output Files

3.5 ADPAC08 Input/Output Files

In this section, the various input/output data �les related to a calculation
using the ADPAC08 program are described. In order to understand the �le
naming convention, the concept of a case name must �rst be detailed. All
�les used in an ADPAC08 calculation are named according to a standard
naming convention of the form:

case.extension

where case is a unique, user-speci�able name identifying the geometry or

ow condition being investigated, and extension is a name describing the
type of �le. The case name must be speci�ed in the standard input �le
described below. A list and description of each of the �les used or generated
by ADPAC08 is given in Table 3.1.

The standard input, standard output, boundary data, and convergence
history �les are stored in ASCII format. All other �les utilize the Scienti�c
DataBase Library (SDBLIB) [10] format. The mesh �le and PLOT3D plot
output �les are compatible with the PLOT3D multiple grid, binary de�ni-
tion (see Sections 3.8 and 3.11 for a description and coding examples of the
SDBLIB binary format). Files dealing with the parallel executaion of the
ADPAC08 code are described in Chapter 4.

The standard input and standard output �les are directed at runtime us-
ing the standard UNIX redirection syntax as:

adpac < case.input > case.output

If a restart run is desired, the user must move the most current output restart
�le from

case.restart.new

to the default input restart �le name

case.restart.old

each time the code is restarted. A more detailed description of the use and
format of the ADPAC08 �les is presented in the sections which follow.

ADPAC08 Input/Output Files 37

Table 3.1: Description of input/output �les and UNIX-based �lenames for
ADPAC08 Euler/Navier-Stokes solver
Name Description
case.input Standard input �le
case.boundata Block boundary de�nition �le
case.output Standard output �le
case.mesh Mesh �le (PLOT3D compatible)
case.p3dabs Final PLOT3D output �le (absolute
ow)
case.p3drel Final PLOT3D output �le (relative
ow)
case.bf.# 2-D blockage/body force �le for block number #
case.p3fr.# Instantaneous PLOT3D interval output �le

(absolute
ow). The frame number is given by #.
case.img.# Instantaneous Silicon Graphics image �le for graphics

interactive display. The frame number is given by #.
case.restart.new New restart �le (output by code)
case.restart.old Old restart �le (used as input for restart runs)
case.converge Solution residual convergence history �le
case.sixpac SIXPAC block subdivision �le (parallel only)
Ncase.bacpac BACPAC block reconstruction �le (parallel only)
Ncase.blkproc ADPAC08 block/processor assignment �le (parallel only)
procdef APPL process description �le (parallel only)

38 ADPAC08 Standard Input File Description

3.6 ADPAC08 Standard Input File Description

The standard ADPAC08 input �le case.input contains the user-speci�able
parameters which control the basic operation of the code during execution.
These parameters tend to be less case dependent (as opposed to the bound-
ary data �le which is entirely case dependent). During code execution, the
input �le is read one line at a time as a character string, and each string
is parsed sequentially to determine the speci�c program action in each case.
The standard input �le utilizes a keyword input format, such that any line
which does not contain a recognizable keyword is treated as a comment line.
Therefore, the user may place any number of comments in the �le (so long
as the line does not contain a keyword input string in the form described
below), and code execution is unaltered. Comments may also be placed after
the variable assigned to the keyword as long as there are one or more blanks
separating the keyword value from the comment string. All input �le lines
are echoed to the standard output, and the program response to each line is
listed when a speci�c action is taken.

All keyword input lines are given in the following format:

KEYWORD = Value Comment String

where KEYWORD is one of the recognized keywords described below, and
Value is the speci�c value to be assigned to that variable. The input line
must contain the equals sign (=) with one or more blanks on both sides in
order to be recognized. The Comment String must be separated by one or
more blank spaces from the Value. Therefore, the lines

DIAM = 10.000

DIAM = 10.000

DIAM = 10.000 This is the diameter.

are valid keyword input lines assigning the value 10.0 to the variable associ-
ated with the keyword DIAM. Conversely, the lines

DIAM= 10.000

DIAM =10.000

DIAM=10.000

ADPAC08 Standard Input File Description 39

are not recognizable keyword input lines (in spite of the presence of the key-
word DIAM), because of the lack of proper placement of the blanks about
the equals sign. The purpose for this restriction is to permit keyword vari-
ables in comment lines, and to help users to generate readable input �les. All
keyword values are either real numbers (which, in many cases, are converted
to integers in the code) or character strings.

A sample ADPAC08 standard input �le containing a number of typical
use keywords is listed below:

ADPAC08 Sample Standard Input File

--

ADPAC Input File

--

NASA 1.15 PRESSURE RATIO FAN - 2 BLADE ROWS

--

VARNAME = VARIABLE VALUE COMMENT

--

CASENAME = nasa The case name is "nasa"

FMULTI = 3.0 Three mesh levels for multigrid

FSUBIT = 1.0 1 subiteration on each coarse mesh level

FFULMG = 1.0 Use "full" multigrid

FCOAG1 = 3.0 Start "full" multigrid on 3rd mesh level

FCOAG2 = 2.0 End "full" multigrid on 2nd mesh level

FITFMG = 150.0 150 "full" multigrid iterations

RMACH = 0.750000 Reference Mach Number

FINVVI = 0.000000 Inviscid Flow

GAMMA = 1.400000 Specific heat ratio

PREF = 2116.220000 Reference Total Pressure (lbf/ft**2)

TREF = 518.670000 Reference Total Temperature (Deg. R)

RGAS = 1716.260010 Gas constant (ft-lbf/slug-deg R)

DIAM = 9.000000 Reference diameter (ft.)

EPSX = 1.500000 Residual smoothing in i direction

EPSY = 1.500000 Residual smoothing in j direction

40 ADPAC08 Standard Input File Description

EPSZ = 1.500000 Residual smoothing in k direction

VIS2 = 0.500000 Fine mesh 2nd order dissipation coefficient

VIS4 = 0.015625 Fine mesh 4th order dissipation coefficient

VISCG2 = 0.125000 Coarse mesh dissipation coefficient

CFL = -5.000000 Steady flow, CFL=5.0

FNCMAX = 150.000000 150 iterations on fine mesh level

PRNO = 0.700000 Gas Prandtl number = 0.7

PRTNO = 0.900000 Turbulent Prandtl number = 0.9

FREST = 0.000000 No restart file is read in

ADVR(1) = -2.780000 Advance ratio for block #1 is -2.78

ADVR(2) = -2.780000 Advance ratio for block #2 is -2.78

ADVR(3) = 0.000000 Advance ratio for block #3 is 0.00

ADVR(4) = 0.000000 Advance ratio for block #4 is 0.00

ENDINPUT

It is unnecessary to specify all possible keywords in every input �le. The
ADPAC08 code is programmed with a default set of input variables such
that the only input variable which must be present is the CASENAME
(described below) which is used to assign input/output �le names. A list and
description of all input keywords and their default values are listed below. A
quick reference to the input �le keywords is provided in Appendix B.

ADPAC08 Standard Input File Keyword Description

ADVR(NUM)
(Default Value = 0.0)

ADVR(1) = 0.0

ADVR(2) = 0.0

ADVR(3) = 0.0

The ADVR keyword value determines the rotational speed (in terms of an
advance ratio) of the mesh block number speci�ed by the value NUM. Block
rotational speeds are, by default, zero, unless either an RPM or an ADVR
keyword are speci�ed otherwise. The advance ratio is inherently tied to the
freestream Mach number speci�ed in the value associated with the keyword

ADPAC08 Standard Input File Description 41

RMACH. If the mesh has not been correctly non-dimensionalized, or if
the value of RMACH is incorrect, it is possible that an incorrect value of
rotational speed would be speci�ed in the calculation.

BFFILE(NUM)
(Default Value = default �le name)

BFFILE(1) = case.bf.b1

The BFFILE keyword value determines the name of the �le used to read in
the data for the blade blockage and body force source terms used to represent
the e�ects of embedded blade rows in 2-D axisymmetric
ow calculations.
The �le speci�ed by BFFILE is used to describe the terms for the block
number indicated by the value of NUM. Body force data �les created by
the ADPAC08 program are named according to the �le naming convention
described in Section 3.5.

CASENAME
(No Default Value)

CASENAME = case

The CASENAME keyword value is used to set the case name which is used
to de�ne all input/output �le names during an ADPAC08 run (see Section
3.5 for details). The case name is limited to an 8 character string, and cannot
contain embedded blanks. The case name has no default value, and as such,
all input �les must contain the CASENAME keyword.

CFL
(Default Value = -5.0)

CFL = -5.0

The CFL keyword de�nes the value of the time step multiplier used in the
time-marching solver. The algorithm is sensitive to the sign of the value
used for CFL in determining the manner in which the time-marching solver
is applied. If CFL < 0.0, local time stepping is used (steady
ow only)
and each cell is advanced in time according to the local maximum allowable
time step. If CFL > 0.0, then a time-accurate time-marching algorithm

42 ADPAC08 Standard Input File Description

is applied, and the code calculates the smallest of all calculated maximum
time steps and applies this value uniformly in the time-marching scheme at
each cell. The absolute value of CFL is used as a multiplier for the time
step (larger absolute values indicate larger time steps). A value of -5.0 is
normally used for steady
ow calculations, and values as high as 7.0 have
been used successfully for time-accurate calculations. The value of CFL is
also used implicitly in the eigenvalue scaling terms in the implicit residual
smoothing algorithm, such that larger values ofCFL imply increased residual
smoothing (see the description of the implicit residual smoothing algorithm
in the companion Final Report [1] and the description of CFMAX).

CFMAX
(Default Value = 2.5 (four stage scheme), 3.5 (�ve stage scheme))

CFMAX = 2.5

The CFMAX variable is used to de�ne the maximum allowable time step
multiplier for the explicit time-marching scheme without residual smooth-
ing. This value is used in the implicit residual smoothing routine to adjust
the smoothing coe�cients for variations in time steps (see the Final Report
[1]). Normally referred to as a CFL number, the variable CFMAX repre-
sents the maximum allowable CFL number for the time-marching scheme
without residual smoothing, while the variable CFL represents the actual
CFL number used in the calculation with residual smoothing. The ratio of
CFL to CFMAX is used to adjust the amount of smoothing in the resid-
ual smoothing operator. IncreasingCFMAX decreases the magnitude of the
residual smoothing coe�cients and therefore decreases the overall smoothing.
Based on linear stability analysis, the four stage Runge-Kutta time-marching
scheme permits a maximum CFL number of 2

p
2. For simplicity, this value is

normally approximated as 2.5 which provides an additional margin of safety.
Under certain circumstances, it may be desirable to reduce CFMAX as low
as 2.0 to aid convergence by arti�cially increasing the amount of residual
smoothing. For the �ve stage scheme values of 3.0 to 3.5 are recommended.

CMUTSS, CMUTPS
(Default Value = 14.0)

CMUTSS = 14.0

CMUTPS = 14.0

ADPAC08 Standard Input File Description 43

The CMUTSS, CMUTPS keywords determine the ratio of local turbulent
to laminar viscosity required to initiate transition for the point transition
model in the ADPAC08 body centered mesh turbulence model activated by
the keyword FTURBCHT. This simpli�ed transition model maintains lam-
inar
ow until the ratio of near wall turbulent viscosity to near wall laminar
viscosity exceeds the value ofCMUTSS orCMUTPS for the \suction side"
and \pressure side", respectively, of the airfoil in question. The transition
model parameters are illustrated in Figure 3.1. A ratio of 14.0 is recom-
mended for all cases unless speci�c testing has indicated an alternate value.

DIAM
(Default Value = 1.0)

DIAM = 1.0

The DIAM keyword is used as a dimensionalizing length scale for the mesh
system for a given case. The ADPAC08 code assumes that the mesh has been
generated in a nondimensional fashion, and must be dimensionalized before
execution. The value of the DIAM variable is used to convert the supposed
nondimensional mesh coordinates into a dimensional length scale with units
of feet. In other words, if the mesh has been generated using a length scale
of inches, then the value of DIAM should be 1

12
, or 0.083333 in order to

convert the mesh units to units of feet. If the mesh units are already in
feet, then the value of DIAM should be simply 1.0. Many mesh generation
systems for turbomachinery geometries nondimensionalize the mesh by a
reference diameter determined from the turbomachinery geometry such that
the maximum value of any radial coordinate in the mesh is 0.5. In this case,
the value of DIAM should be the diameter of the turbomachine in feet used
to nondimensionalize the mesh. Proper speci�cation of the DIAM value is
critical to achieve the correct
ow Reynolds number and rotational speed for
rotating geometries. Many problems can be traced to improper speci�cation
of the DIAM value and the user should take care to understand the use of
this keyword. When in doubt, the user should remember the simple rule that
the actual mesh units, when multiplied by the value of DIAM should result
in physical lengths expressed in feet.

ENDINPUT

44 ADPAC08 Standard Input File Description

Body−Centered Mesh Block
Turbulence Model Nomenclature

Axial Chord

Pressure Side

Suction Side

i direction

Transition forced at XTRANSS
on suction surface

XTRANSS

XTRANPS

Transition forced at XTRANPS
on pressure surface

CMUTSS sets transition
when x<XTRANSS

CMUTPS sets transition
when x<XTRANPS

0.0 1.0

Figure 3.1: ADPAC08 Body-Centered Mesh Turbulence Model Nomencla-
ture Summary

ADPAC08 Standard Input File Description 45

ENDINPUT

When the ADPAC08 program encounters the keyword ENDINPUT, the
parser which searches each line for a valid input keyword string is termi-
nated, and no additional input �le lines are parsed for input keyword values.
Any lines following the ENDINPUT statement are ignored, except when
the graphics display system is in e�ect across a network, in which case the
statements following the ENDINPUT statement must contain two blank
lines and the Internet network address of the destination display device (see
Chapter 9 for a description of the Interactive Graphics Display option).

EPSTOT
(Default Value = 0.1)

EPSTOT = 0.1

The EPSTOT keyword determines the value of the smoothing coe�cient
employed in the post multigrid smoothing algorithm described by the trigger
FTOTSM. This coe�cient is only used when FTOTSM = 1.0. The value
of the coe�cient may be any positive number, but for most circumstances, a
value between 0.0 and 0.25 is suggested (larger values imply more smoothing).

EPSX, EPSY, EPSZ
(Default Value = 1.0)

EPSX = 1.0

EPSY = 1.0

EPSZ = 1.0

The EPSX, EPSY, EPSZ keywords set the value of the implicit resid-
ual smoothing coe�cient multipliers in the i, j, and k coordinate directions,
respectively. The values of EPSX, EPSY, and EPSZ are used as simple
multipliers for the residual smoothing coe�cients calculated by the eigen-
value scaling residual smoothing scheme described in the Final Report [1]. If
EPSX, EPSY or EPSZ = 0.0, then no smoothing is applied for the given
coordinate direction. The user should be aware that the keyword variable
FRESID controls the global application of residual smoothing in the so-
lution algorithm, and in the case where FRESID=0.0 (residual smoothing

46 ADPAC08 Standard Input File Description

disabled), the EPSX, EPSY, EPSZ have no impact on the solution. The
default value for the coe�cient multipliers is 1.0. Any value larger than 1.0
simply implies excess smoothing and may be useful for cases with poor con-
vergence or undesirable mesh quality. If a value larger than 3.0 is required to
stabilize a solution, this generally indicates some sort of problem in the cal-
culation (such as poor mesh aspect ratio, bad boundary speci�cation, etc.),
or might suggest that FRESID has been set to 0.0. Values less than 1.0 will
likely cause code instabilities for values of CFL greater than 2.0.

FBCONF
(Default Value = 99999.0)

FBCONF = 99999.0

The FBCONF keyword assigns a trigger which determines the iteration
number at which the boundary conditions are frozen. This trigger was added
for those cases where convergence is apparently hindered by \noise" from the
boundary conditions. Caution must be exercised when using the FBCONF
variable due to the fact that the ADPAC08 code could ultimately diverge
when all of the boundary conditions are frozen.

FCARB(NUM)
(Default Values = 0.0)

FCARB(1) = 1.0

FCARB(2) = 0.0

FCARB(3) = 0.0

FCARB(4) = 0.0

FCARB(5) = 0.0

The keyword FCARB(NUM) sets a block speci�c trigger for the mesh
block number speci�ed by NUM which determines, on a block by block
basis, whether the Cartesian (FCARB(NUM) = 1.0) or the cylindrical
(FCARB(NUM) = 0.0) solution algorithm is employed by that block. The
ADPAC08 code permits mixed cylindrical and Cartesian solution blocks in a
single calculation. While the variable FCART may be used to set the global
value of mesh blocks for either cylindrical or Cartesian solution status, the
variable FCARB(NUM) may be utilized to set speci�c blocks one way or
the other. It must be noted that the variable FCARB(NUM) will always

ADPAC08 Standard Input File Description 47

override the status implied by FCART. At present, the only boundary con-
dition which permits interblock communication between mixed cylindrical
and Cartesian blocks is BCPRR (see Section 3.7).

FCART
(Default Value = 0.0)

FCART = 0.0

The FCART keyword assigns a trigger which controls the cylindrical/Cartesian
coordinate system solution scheme in the the ADPAC08 code. If FCART =
0.0, then all blocks (except those speci�cally altered by the FCARB input
variable) are treated as cylindrical coordinate system blocks. If FCART =
1.0, then all blocks (except those speci�cally altered by the FCARB input
variable) are treated as Cartesian coordinate system blocks.

FCOAG1
(Default Value = 1.0)

FCOAG1 = 1.0

The FCOAG1 keyword speci�es the initial, or coarsest coarse mesh level
upon which the \full" multigrid calculation is initially applied (for addi-
tional details, see the description of FFULMG). When multiple coarse mesh
levels are available for processing, it is occasionally useful to specify the
initial coarse mesh level in the \full" multigrid sequence in order to avoid
wasted computations on lower mesh levels. Typically, FCOAG1 is set to
FMULTI (start \full" multigrid on coarsest mesh level). In some cases
(when FMULTI is larger than 3.0) it may be advisable to set FCOAG1 to
3.0, and avoid useless processing on coarser meshes during the \full" multi-
grid startup process. A
owchart of the ADPAC08 iteration and multigrid
control algorithm is given in Figure 3.2. An example is given in the descrip-
tion of FCOAG2.

FCOAG2
(Default Value = 1.0)

FCOAG2 = 1.0

48 ADPAC08 Standard Input File Description

The FCOAG2 keyword speci�es the �nal, or �nest coarse mesh level upon
which the \full" multigrid calculation is applied (for additional details, see the
description of FFULMG). When multiple coarse mesh levels are available
for processing, it is occasionally useful to specify the �nal coarse mesh level
in the \full" multigrid sequence in order to examine the
ow�eld without
actually performing any calculations on the �ne mesh. For example, the
combination

FMULTI = 3.0

FCOAG1 = 3.0

FCOAG2 = 3.0

FNCMAX = 10.0

FITFMG = 100.0

would direct a \full" multigrid startup of 100 iterations on mesh level 3, and
since FCOAG2=3.0, the \full" multigrid sequence is ended at this mesh
level. The solution is then interpolated to the �ne mesh, and then 10 �ne
mesh iterations using 3 levels of multigrid would be performed. Typically,
FCOAG1 is set to 2.0, which indicates that the \full" multigrid startup
procedure utilizes all mesh levels from FCOAG1 to 2 before starting any
processing on the �ne mesh. A
owchart of the ADPAC08 iteration and
multigrid control algorithm is given in Figure 3.2.

FDEBUG(NUM)
(Default Values = 0.0)

FDEBUG(1) = 0.0

FDEBUG(2) = 0.0

FDEBUG(3) = 3.0

FDEBUG(4) = 0.0

FDEBUG(5) = 0.0

The keyword FDEBUG(TYPE) de�nes a block number for the debug out-
put type speci�ed by TYPE which determines, on a type by type basis,
whether debug output from the ADPAC08 run is printed to the standard
output. When enabled, this variable will generate an extreme amount of
output and should therefore be used only in a controlled debugging envi-
ronment. The value of the variable FDEBUG(TYPE) determines for which

ADPAC08 Standard Input File Description 49

blocks the particular type of output is enabled. The following debug output
types are currently supported:

FDEBUG(1) Print the input (Cartesian) mesh points

FDEBUG(2) Print the (converted) cylindrical mesh points

FDEBUG(3) Print the cell face areas

FDEBUG(4) Print the cell volumes

FDEBUG(5) Print the cell
ow data

FDEBUG(6) Print the cell time steps

FDEBUG(7) Print the cell convective
uxes

FDEBUG(8) Prin the cell dissipative
uxes

FDEBUG(9) Print the cell di�usive
uxes

FDEBUG(10) Print the cell implicit residual smoothing data

FFILT
(Default Value = 1.0)

FFILT = 1.0

The FFILT keyword assigns a trigger which determines directly whether the
added dissipation routines are called during the time-marching process. If
FFILT = 0.0, then no added dissipation is calculated. It is also possible
to turn o� the added dissipation by setting the values of VIS2 and VIS4
to 0.0; however, the use of FFILT avoids the calculation of the dissipation
terms entirely. It is unlikely that any value other than 1.0 is required except
for code debugging purposes.

FFULMG
(Default Value = 0.0)

50 ADPAC08 Standard Input File Description

FFULMG = 0.0

The FFULMG keyword assigns a trigger which determines whether the
\full" multigrid solution procedure is applied or whether the standard multi-
grid procedure is used. The use of \full" multigrid is advisable (but not
required) when a new calculation is being started as a means of rapidly gen-
erating a better initial guess for the �nal
ow�eld. If the solution is being
restarted from a previous calculation (FREST=1.0), it is usually advisable
to set FFULMG to 0.0 to avoid destroying the initial data read from the
restart �le (a warning message is issued when this combination is speci�ed).
A
owchart of the ADPAC08 iteration and multigrid control algorithm is
given in Figure 3.2.

FGRAFINT
(Default Value = 1.0)

FGRAFINT = 1.0

The FGRAFINT keyword determines the number of iterations between

ow�eld display updates for the ADPAC08 real time graphics display system.
This option is only valid when FGRAFIX = 1.0, and is subject to a number
of other restrictions for the graphics display system (see the description of
input keywords FGRAFIX and FIMGSAV, and the description of the
graphics display system, Chapter 9). The default value for FGRAFINT is
1.0, which indicates that the graphics display will be updated every iteration.
This can cause excessive computational and network overhead, and the user
should be aware of the potential problems when using the graphics display
features.

FGRAFIX
(Default Value = 0.0)

FGRAFIX = 0.0

The FGRAFIX keyword sets a trigger which controls the generation of the
real time interactive graphics display in the ADPAC08 program. A value
of FGRAFIX = 1.0 indicates that the interactive graphics display facil-
ity is desired, while FGRAFIX = 0.0 turns this option o�. When func-
tional, the graphics screen is updated with the latest available
ow data

ADPAC08 Standard Input File Description 51

every FGRAFINT iteration. Graphics images can be automatically cap-
tured on speci�c computer hardware every FIMGSAV iterations as a means
of creating
ow�eld animations (see Graphics Display, Chapter 9).In order
for the graphics display to work, the code must be compiled with either
the graphics or pfagraphics Make�le option (see Section 3.4 for a descrip-
tion of the Make�le and the ADPAC08 code compilation process). There
are also speci�c machine requirements for this option to work as well (see
the section on Graphics Display, Chapter 9). The generation of interactive,
real time graphics images increases the overall computational cost, and can
cause network overloading in some cases due to the transmission of graphics
information.

FIMGINT
(Default Value = 99999.0)

FIMGINT = 99999.0

The FIMGINT keyword determines the number of iterations between
ow-
�eld graphics display image capturing available on Silicon Graphics com-
puters for the ADPAC08 real time graphics display system. This option is
only valid when FGRAFIX = 1.0, and FIMGSAV = 1.0, and is subject
to a number of other restrictions for the graphics display system (see the
description of input keywords FGRAFIX and FGRAFINT, and the de-
scription of the graphics display system, Chapter 9). The default value for
FIMGINT is 99999.0, which indicates that a screen image will be saved
every 99999 iterations. This large value was chosen to prohibit accidental
image capturing, which can quickly �ll up a large amount of disk storage.
The graphics display system can cause excessive computational and network
overhead, and the user should be aware of the potential problems when using
this feature of the ADPAC08 code.

FIMGSAVE
(Default Value = 0.0)

FIMGSAV = 0.0

The FIMGSAV keyword sets a trigger which controls the Silicon Graphics
computer screen image capturing facility of the real time interactive graphics
display in the ADPAC08 program. A value of FIMGSAV = 1.0 indicates

52 ADPAC08 Standard Input File Description

that the graphics image capturing facility is desired, while FIMGSAV =
0.0 turns this option o�. When the interactive graphics display option has
been enabled (see details for input keywords FGRAFIX, FGRAFINT)
the graphics screen is updated with the latest available
ow data every
FGRAFINT iteration. When the image capturing facility is enabled, these
graphics images can be automatically captured on speci�c computer hard-
ware every FIMGINT iterations as a means of creating
ow�eld animations
(see Graphics Display, Chapter 9).In order for the graphics display image
capturing facility to work, the code must be compiled with either the graph-
ics, or pfagraphics Make�le option (see Section 3.4 for a description of the
Make�le and the ADPAC08 code compilation process). There are also spe-
ci�c machine requirements for this option to work as well (see the section on
Graphics Display, Chapter 9). The generation of interactive, real time graph-
ics images increases the overall computational cost, and can cause network
overloading in some cases due to the transmission of graphics information.
The capturing of many screen images will also require a large amount of �le
storage space (see Section 3.5 for a description of the image capturing �le
naming convention).

FINVVI
(Default Value = 0.0)

FINVVI = 0.0

The FINVVI keyword is a simple trigger to determine whether the solution
mode is for inviscid
ow (FINVVI = 0.0) or for viscous
ow (FINVVI
= 1.0). This trigger controls whether the viscous stress
ux contributions
are calculated during the time-marching process. This does not a�ect the
application of boundary conditions, as this is completely controlled by the
speci�cations in the boundary data �le (see Section 3.7). As such, it is
possible to run viscous boundary conditions in an inviscid
ow solution, and
inviscid boundary conditions in a viscous
ow solution.

FITCHK
(Default Value = 100.0)

FITCHK = 100.0

ADPAC08 Standard Input File Description 53

The FITCHK keyword controls the number of iterations between job check-
pointing in the ADPAC08 program. Job checkpointing refers to the process
of periodically saving the
ow�eld information to minimize the loss of data
in the event that the job does not terminate normally. As a safety feature,
the ADPAC08 program writes out an updated restart �le every FITCHK
iterations in case the job stops before the �nal restart �le output proce-
dures are completed. It is not necessary to write out intermediate restart
�les, but this is considered a good precaution against unexpected problems
such as computer failures, or system administration quotas. A good interval
for checkpointing is 100 iterations (FITCHK = 100.0). The intermediate
restart �les, as well as the �nal restart �le, are all written to the same �le
name, and therefore previous checkpoints cannot be retrieved when the �le is
overwritten (see Section 3.5 for restart �le naming conventions). Job check-
pointing only applies to the iterative cycles involving the �ne mesh, and does
not apply to the coarse mesh iterations calculated during a "full" multigrid
startup (see FFULMG).

FITFMG
(Default Value = 100.0)

FITFMG = 100.0

The FITFMG keyword dictates the number of iterations to be performed
on each of the coarse mesh levels during a \full" multigrid startup sequence
(see the description of FFULMG). Typically, the startup sequence is used
only to generate a reasonable initial guess for the �ne mesh, so the value
of FITFMG is kept relatively low (� 100). The function of the keyword
FITFMG is illustrated graphically in Figure 3.2.

FMASSAVG
(Default Value = 3.0)

FMASSAVG = 3.0

The FMASSAVG keyword describes a trigger which determines the type
of mass averaging used in the ADPAC08 code for various boundary condi-
tions. In particular, the MBCAVG boundary condition which imposes a
circumferential mixing plane for simpli�ed representation of multistage tur-
bomachinery blade row
ows is the most commonly a�ected roputine. A

54 ADPAC08 Standard Input File Description

value of FMASSAVG = 0.0 implies that an algebraic average is to be used
in the averaging operator. A value of FMASSAVG = 1.0 implies that an
area average is to be used in the averaging operator. A value of FMAS-
SAVG = 2.0 implies that a true mass-weighted average is to be used in the
averaging operator. Values of 2.0 and 3.0 are recommended, as the algebraic
average introduces a fair amount of error.

FMULTI
(Default Value = 1.0)

FMULTI = 1.0

The FMULTI keyword assigns the number of multigrid levels to be used
during the calculation (for a description of the multigrid algorithm, see Ref-
erence [1]). The code will analyze the dimensions of the �ne mesh to de-
termine whether it can be properly subdivided according to the number of
multigrid levels requested. If FMULTI � 1.0, then the number of multigrid
levels is set to 1, and the calculation is performed on the �nest mesh only
without multigrid acceleration. For unsteady
ows, multigrid is not valid,
and FMULTI should be set to 1.0. A
owchart of the ADPAC08 iteration
and multigrid control algorithm is given in Figure 3.2.

FNCMAX
(Default Value = 100.0)

FNCMAX = 100.0

The FNCMAX keyword controls the total number of iterations for a non-
multigrid calculation (FMULTI � 1.0), or the number of global iterations
on the �nest mesh for a multigrid calculation (FMULTI > 1.0). The total
number of iterations performed on all meshes for a multigrid run is con-
trolled by a combination of FNCMAX, FMULTI, FCOAG1, FCOAG2,
FFULMG, FITFMG, and FSUBIT. For example, the values

FNCMAX = 200.0

FMULTI = 1.0

FITFMG = 0.0

FFULMG = 0.0

FSUBIT = 0.0

ADPAC08 Standard Input File Description 55

would prescribe 200 iterations of a non-multigrid run (only the �ne mesh is
used). The values

FNCMAX = 200.0

FMULTI = 3.0

FITFMG = 0.0

FFULMG = 0.0

FSUBIT = 1.0

would prescribe 200 multigrid iterations using 3 mesh levels (but still only
200 global iterations, where each iteration involves a single subiteration on
each of 3 mesh levels). And �nally, the values

FNCMAX = 200.0

FMULTI = 3.0

FITFMG = 50.0

FFULMG = 1.0

FSUBIT = 1.0

FCOAG1 = 3

FCOAG2 = 2

would prescribe an initial pass of 50 iterations on the third mesh level, fol-
lowed by 50 multigrid iterations on the second mesh level, and �nally 200
global multigrid iterations on the �nest mesh level. See the descriptions of
the variables FNCMAX, FMULTI, FCOAG1, FCOAG2, FFULMG,
FITFMG, and FSUBIT for further details. A
owchart of the ADPAC08 it-
eration and multigrid control algorithm is given in Figure 3.2.

FRDMUL
(Default Value = 0.0)

FRDMUL = 0.0

The FRDMUL keyword determines whether boundary condition data for
the coarse mesh levels of a multigrid run are generated from the �ne mesh
boundary conditions speci�ed in the ADPAC08 boundary data �le (FRD-
MUL = 0.0), or whether the coarse mesh boundary speci�cations are actu-
ally read in from the boundary data �le (FRDMUL = 1.0). In most cases,

56 ADPAC08 Standard Input File Description

Start
Program

Multigrid
Run?

Full
Multigrid?

FMULTI=1.0 FMULTI>1.0

No Yes

No Yes

FNCMAX iterations

on fine mesh (level 1) only

FNCMAX iterations on

fine mesh (level 1) using

FMULTI levels of multigrid

with FSUBIT subiterations

on each coarse mesh level

FFULMG=0.0 FFULMG=1.0

FITFMG iterations on mesh level

FCOAG1 using (FMULTI−FCOAG1+1)

levels of multigrid with FSUBIT

subiterations on each coarse mesh level

End
Program

Interpolate to next mesh level

FITFMG iterations on mesh level

FCOAG1−1 using (FMULTI−FCOAG1+2)

levels of multigrid with FSUBIT subiterations

on each coarse mesh level (repeat as needed)

FITFMG iterations on mesh level

FCOAG2 using (FMULTI−FCOAG2+1)

levels of multigrid with FSUBIT

subiterations on each coarse mesh level

Interpolate to next mesh level

ADPAC Input Keyword Multigrid Cycle
and Time−Marching Iteration Management Flowchart

Interpolate to fine mesh level

Figure 3.2: ADPAC08 Input Keyword Multigrid Cycle and Time-Marching
Iteration Management Flowchart

ADPAC08 Standard Input File Description 57

FRDMUL should be set to 0.0, and the program will determine the equiva-
lent coarse mesh boundary conditions from the �ne mesh speci�cations. For
the purposes of code debugging, or to permit multigrid calculation on a mesh
which does not possess perfect \multigrid" boundary segments (a boundary
condition for the �ne mesh does not begin or end at a mesh index which is
compatible with the multigrid sequence), it is possible to \fool" the program
into running multigrid by arti�cially specifying an equivalent coarse mesh
boundary condition.

FRESID
(Default Value = 1.0)

FRESID = 1.0

The FRESID keyword assigns a trigger which determines directly whether
the implicit residual smoothing routines are called during the time-marching
process. If FRESID = 0.0, then no residual smoothing is applied. It
is also possible to turn o� the residual smoothing by setting the values of
EPSX, EPSY, and EPSZ to 0.0; however, the use of FRESID avoids
the calculation of the smoothed residuals entirely. It is unlikely that any
value other than 1.0 is required except for code debugging purposes, or for
calculations involving CFL� 2.0.

FREST
(Default Value = 0.0)

FREST = 0.0

The FREST keyword assigns a trigger which controls the restart character-
istics of the ADPAC08 code. If FREST = 0.0, then no restart �le is used,
and the
ow variables are initialized according to the scheme described by the
input keyword RMACH. If FREST = 1.0, then the code attempts to open
a restart �le (case.restart.old) described by the �le naming convention (see
Section 3.5), and the
ow variables are initialized by the values given in the
restart �le. Restarting a calculation from a previous calculation is often use-
ful for breaking up large calculations into smaller computational pieces, and
may also provide faster convergence for cases which involve minor changes
to a previous calculation.

58 ADPAC08 Standard Input File Description

FSAVE
(Default Value = 1.0)

FSAVE = 1.0

The FSAVE keyword assigns a trigger which controls the restart �le output
characteristics of the ADPAC08 code. If FSAVE = 0.0, then no restart �le
is written at the end of an ADPAC08 run. If FSAVE = 1.0, then the code
attempts to open a restart �le (case.restart.new) described by the �le naming
convention (see Section 3.5), and the
ow variables are written to the restart
�le for future processing. Restarting a calculation from a previous calculation
is often useful for breaking up large calculations into smaller computational
pieces, and may also provide faster convergence for cases which involve minor
changes to a previous calculation. The recommended procedure is to always
write a restart �le.

FSOLVE
(Default Value = 1.0)

FSOLVE = 1.0

The FSOLVE keyword assigns a trigger which determines which type of
time-marching strategy is employed on both �ne and coarse meshes. For
FSOLVE = 0.0, the standard 4-stage Runge Kutta time-marching scheme is
used with a single added dissipation evaluation, and implicit residual smooth-
ing at alternating stages. For FSOLVE = 1.0, a modi�ed 4-stage Runge
Kutta time-marching scheme is used with a two evaluations of the added
dissipation, and implicit residual smoothing at every stage. For FSOLVE =
2.0, a 5-stage Runge Kutta time-marching scheme is used with three weighted
added dissipation evaluations, and implicit residual smoothing at every stage.
FSOLVE = 1.0 is the recommended value, although the other schemes may
provide improved convergence at a somewhat di�erent computational cost.

FSUBIT
(Default Value = 1.0)

FSUBIT = 1.0

ADPAC08 Standard Input File Description 59

The FSUBIT keyword determines the number of subiterations performed
on coarse meshes during the coarse mesh portion of the multigrid cycle. As
such, this variable is actually only used when FMULTI > 1.0. Additional
subiterations on coarse meshes during the multigrid cycle can often improve
convergence, at the expense of some additional computational work. The
number of subiterations speci�ed by FSUBIT is applied at each coarse mesh
level during the multigrid calculations process. A value of 1.0, 2.0, or 3.0 is
typically best. A complete description of the multigrid calculation process
is given in the Final Report [1]. A
owchart of the ADPAC08 iteration and
multigrid control algorithm is given in Figure 3.2.

FTIMEI
(Default Value = 1.0)

FTIMEI = 1.0

The FTIMEI keyword assigns a trigger which determines the number of
iterations between time step evaluations. For best results, this should be
1.0, which implies that the time step is re-evaluated at every iteration. How-
ever, this value can be increased (< 10) to reduce CPU time by reevaluating
the time step every FTIMEI iterations instead (at the possible expense of
irregular convergence).

FTIMERM
(Default Value = 0.0)

FTIMERM = 0.0

The FTIMERM keyword is utilized to control CPU quota during a run
of the ADPAC08 code. The e�ect of this variable is di�erent during execu-
tion on a Cray computer and a UNIX workstation. On the Cray, for jobs
running under the Network Queuing System (NQS), any nonzero value for
FTIMERM directs the code to determine how much CPU time remains
allocated to the current job during each time-marching iteration, and the
ADPAC08 code estimates how much of that CPU time is required to nor-
mally shut down the current job. If the time remaining to the allocation is
indicated by TIME, and if the time required to shutdown is SHUT , then

60 ADPAC08 Standard Input File Description

the code will evaluate the expression

TIME � SHUT + FTIMERM

where each term is in CPU seconds. If this expression is less than 0.0, then
the code will halt the time marching process and attempt to shut down so
the various output �les can be written prior to termination by NQS due to
CPU quota. Note that if FTIMERM is a negative number, then the code
will shut down \early" in case additional programs must run under a given
NQS run. On a UNIX workstation, NQS is usually not available, and in
this case, the code keeps track of accumulated CPU time and terminates
normal job processing when the accumulated CPU time exceeds the value of
FTIMERM.

FTOTSM
(Default Value = 0.0)

FTOTSM = 0.0

The FTOTSM keyword is used to trigger the post multigrid smoothing al-
gorithm. In this scheme, the residual corrections from the multigrid process
are combined with the �ne mesh residuals and are smoothed globally using
a simple constant coe�cient version of the implicit residual smoothing al-
gorithm. The smoothing coe�cient is determined by the value of the input
keyword variable EPSTOT. The scheme is disabled when FTOTSM has
a value of 0.0, and is employed when FTOTSM has a value of 1.0. This
scheme has been found to aid stability, but can actually hinder convergence
in some cases.

FTURBB
(Default Value = 10.0)

FTURBB = 10.0

The FTURBB keyword assigns a trigger which determines the number of
iterations before the turbulence model is activated. For laminar
ow, set
FTURBB to a very large number (FTURBB> FNCMAX+ (FMULTI-
1) * FITFMG) * FFULMG) so the turbulence model is never called. For
turbulent
ow, the value should be large enough (e.g., � 10) to ensure that

ADPAC08 Standard Input File Description 61

the solution has developed adequately enough to permit stable implementa-
tion of the turbulence model (i.e., the
ow�eld should at least exhibit the
gross characteristics (correct
ow direction, some boundary layer develop-
ment) of the expected �nal
ow before the turbulence model is activated).

FTURBCHT(NUM)
(Default Values = 0.0)

FTURBCHT(1) = 1.0

FTURBCHT(2) = 0.0

FTURBCHT(3) = 0.0

FTURBCHT(4) = 0.0

FTURBCHT(5) = 0.0

The keyword FTURBCHT(NUM) sets a block speci�c trigger for the mesh
block number speci�ed by the value NUM to enable the body-centered mesh
turbulence model described in Figure 3.1. If FTURBCHT(NUM) is set
to 0.0, the standard turbulence model is used for the block speci�ed by
NUM. If FTURBCHT(NUM) is set to 1.0, then the special transition and
body centered turbulence model is used for the block speci�ed by NUM. The
body-centered turbulence model locates the airfoil leading and trailing edges,
and utilizes axial chord notation in conjunction with the input variables
XTRANSS, XTRANPS and CMUTSS, CMUTPS to determine the
natural transition point on the airfoil. This turbulence model was developed
during an analysis of surface heat transfer (where transition plays a critical
role) on a turbine vane cascade using a C-type mesh. The use of this model
is recommended whenever the mesh topology is compatible with the scheme
illustrated in Figure 3.1.

FTURBF
(Default Value = 99999.0)

FTURBF = 99999.0

The FTURBF keyword assigns a trigger which determines the iteration
number at which the turbulence model is frozen. This trigger was added for
those cases where convergence is apparently hindered by \noise" from the
turbulence model. Caution must be exercised when using the FTURBF

62 ADPAC08 Standard Input File Description

variable due to the fact that the ADPAC08 restart �le does not contain any
turbulent viscosity data. If the ADPAC08 code is restarted from a turbulent

ow solution when the value of FTURBF is less than the current iteration
level, no turbulent quantities will be generated and the
ow will exhibit
laminar
ow characteristics.

FTURBI
(Default Value = 1.0)

FTURBI = 0.0

The FTURBI keyword assigns a trigger which determines the number of
iterations between turbulence model evaluations. For best results, this should
be 1.0, which implies that the turbulence parameters are reevaluated at every
iteration. However, this value can be increased (< 10) to reduce CPU time
by reevaluating the turbulence quantities every FTURBI iterations instead
(at the possible expense of irregular convergence).

FUNINT
(Default Value = 99999.0)

FUNINT = 99999.0

The FUNINT keyword is used to determine the number of iterations be-
tween instantaneous PLOT3D absolute
ow �le output. For a time-dependent
calculation, it is often desirable to print out data at several intervals during
the course of the solution to examine the time-dependent nature of the
ow.
The ADPAC08 program provides a mechanism by which a PLOT3D format

ow �le can be printed at a �xed iteration interval (the interval de�ned by
the value of FUNINT) as a means of extracting time-dependent data dur-
ing a calculation. For steady
ow calculations, it is normally desirable to set
FUNINT to a very large number, and simply use the �nal output PLOT3D
format �les if needed. For unsteady
ow calculations, the value of FUNINT
can be highly case dependent, and some numerical experimentation may be
required to prevent excessive output, or a de�ciency in data. The �le naming
convention for the unsteady output �les is given in Section 3.5.

FUPWIND
(Default Value = 0.0)

ADPAC08 Standard Input File Description 63

FUPWIND = 0.0

The FUPWIND keyword is a simple trigger to activate the upwind di�er-
encing scheme (on=1.0, o�=0.0) available for the 2-D mesh block solver in
the ADPAC08 code. The upwind di�erencing scheme is a �rst order scheme
available for experimentation only, and is not a recommended solution tech-
nique for real
ow calculations at this point.

FVTSFAC
(Default Value = 2.5)

FVTSFAC = 2.5

The FVTSFAC keyword determines the value of the viscous time step eval-
uation factor used to stabilize the time-marching solution for viscous
ows.
This factor is used to magnify the importance of the di�usion-related contri-
butions to the time step evaluation (larger values suggest larger restrictions
due to di�usion related parameters). This factor is particularly useful for
meshes with rapid changes in grid spacing, and the default value of 2.5 was
prescribed somewhat arbitrarily following numerical experimentation. It is
unlikely that this value needs modi�cation for most cases.

FWALLF
(Default Value = 1.0)

FWALLF = 1.0

The FWALLF keyword is used to trigger the use of wall functions in the AD-
PAC08 turbulence model. Wall functions are normally desirable for meshes
which are not highly clustered near solid surfaces. The ADPAC08 code can
determine when the wall function model is necessary and will automatically
disable the wall function model (even if FWALLF is enabled) in favor of
the standard turbulence model wall treatment for meshes with acceptable
near wall spacing (roughly 0.0001 times airfoil chord for turbomachinery ap-
plications). The wall function model is not recommended for applications
involving signi�cant heat transfer.

GAMMA
(Default Value = 1.4)

64 ADPAC08 Standard Input File Description

GAMMA = 1.4

The GAMMA keyword sets the value for the gas speci�c heat ratio. For
most cases involving air at moderate pressures and temperatures, a value of
1.4 is adequate. For cases involving combustion products, this value may be
quite di�erent, and should be considered appropriately. Extreme care must
be taken when post-processing a calculation which is based on a value of
GAMMA other than 1.4 as many post processors use an assumed value
of the speci�c heat ratio equal to 1.4 (PLOT3D is a common example). It
should be mentioned that the present version of the code does not permit
user speci�cation of the
uid viscosity, as the formula for air is hardwired
into the code.

P3DPRT
(Default Value = 1.0)

P3DPRT = 1.0

TheP3DPRT keyword assigns a trigger which determines whether PLOT3D
format output �les are written at the end of a calculation. A value of
P3DPRT = 1.0 indicates that the output �les should be written. Con-
versely, a value of P3DPRT = 0.0 indicates that the PLOT3D format out-
put �les should not be written. The PLOT3D output �les (see Section 3.5 for
�le naming conventions for output �les) are useful for graphically examining
the predicted
ow quantities using widely available plotting software such as
PLOT3D, FAST, SURF, etc. Occasionally, however, due to disk space limi-
tations or simply to speed up execution, it may be desirable to eliminate this
output feature, and therefore P3DPRT can be used to control this output.

PREF
(Default Value = 2116.22)

PREF = 2116.22

The PREF keyword sets the dimensional value (in pounds force per square
foot) of the reference total pressure used to nondimensionalize the
ow�eld.
For viscous
ows, this value must be accurately speci�ed in order to properly
set the nondimensional
ow viscosity, (and hence, the Reynolds number).
For inviscid
ow predictions, this value has no real signi�cance because of

ADPAC08 Standard Input File Description 65

the similarity of inviscid
ows with Mach number. It is very important
to choose an average representative value for this variable, such that the
nondimensional total pressure at any point in the
ow is near a value of
1.0. An extended discussion on the reason for this choice is given in the
description of RMACH.

PRNO
(Default Value = 0.7)

PRNO = 0.7

The PRNO keyword assigns the value of the gas Prandtl number. For air
(and many other gases) at moderate pressures and temperatures, a value of
0.7 is appropriate.

PRTNO
(Default Value = 0.9)

PRTNO = 0.9

The PRTNO keyword assigns the value of the gas turbulent Prandtl num-
ber. The turbulence model in ADPAC08 determines the turbulent thermal
conductivity via a turbulent Prandtl number and the calculated turbulent
viscosity (see the Final Report [1]). The recommended value is 0.9.

RGAS
(Default Value = 1716.26)

RGAS = 1716.26

The RGAS keyword sets the dimensional value (in foot-pounds force per
slug-degree Rankine) of the gas constant. The default value is for atmospheric
air at standard pressure and temperature. This value is used in conjunction
with GAMMA in determining the gas speci�c heats at constant pressure
and constant volume.

RMACH
(Default Value = 0.5)

RMACH = 0.5

66 ADPAC08 Standard Input File Description

The RMACH keyword value is intended to set an initial or reference
ow
Mach number. This value is used primarily to set the initial freestream
ow
variables (density, pressure, temperature and axial velocity) for a given cal-
culation based on a �xed Mach number. The freestream values are used to
initialize the
ow�eld prior to the execution of the time-marching solver in
the absence of a restart �le. It should be mentioned that the initial data val-
ues are assigned based on the assumption that the nondimensional freestream
total pressure and total temperature are 1.0 where the nondimensional val-
ues are referenced to the dimensional values determined by the PREF and
TREF input variables. This implies that it is advisable to set up all in-
put variables (in particular PREF and TREF), and boundaray data for
PEXIT (described in Section 3.7 on boundary data �le speci�cations) such
that the imposed inlet and exit
ow boundary conditions are compatible with
the initial conditions derived from RMACH, based on the assumed global
nondimensional total pressure and temperature. For example, suppose that
the desired solution for an internal stage compressor rotor has an inlet total
pressure of 24 psia, and an exit static pressure of 23.5 psia. For compressor
designers, these numbers might commonly be referenced to standard atmo-
spheric pressure (14.7 psia), resulting in nondimensional upstream total and
exit static pressures of 1.6326 and 1.5986, respectively. If RMACH is set to
0.5, and the reference pressure is 14.7 psia, then the interior mesh points
will be initiated with a static pressure value of 0.84302. It is unlikely that
a stable solution will result when the exit static pressure is 1.5986, and the
interior static pressure is 0.84302 (reversed
ow at the exit boundary will re-
sult). A better approach is to specify 24 psia as the reference pressure, such
that the nondimensional inlet total and exit static pressures are 1.0, and
0.97917, and the initial nondimensional static pressure at the interior cells is
0.84302. With these values, it is much more likely that a stable solution will
result. In addition, the value of RMACH is used in conjunction with the
value of advance ratio speci�ed by the keyword ADVR, when the rotational
speed is de�ned in this manner. In this case, the value of RMACH must be
the freestream Mach number associated with the advance ratio speci�ed by
ADVR or an incorrect rotational speed will be calculated. A common error
when using the RMACH input variable is to assume that the speci�cation
of the reference Mach number will set the
ow for the case of interest. This is
not true, as the boundary condition speci�cations will ultimately determine
the
ow conditions for any case.

ADPAC08 Standard Input File Description 67

RPM(NUM)
(Default Value = 0.0)

RPM(1) = 0.0

RPM(2) = 0.0

RPM(3) = 0.0

RPM(4) = 0.0

RPM(5) = 0.0

The RPM keyword value determines the rotational speed (in revolutions per
minute) of the mesh block number speci�ed by the value NUM. The value
of RPM is, by nature, a dimensional value. Block rotational speeds are,
by default, zero, unless either an RPM or an ADVR keyword are speci�ed
otherwise. The user should be aware that if the mesh has not been correctly
non-dimensionalized, it is then possible that an incorrect value of rotational
speed would be used in the calculation (see the description of the keyword
DIAM). The user should also be aware that this value is sign speci�c, and
many computational problems traced to geometries which were rotating the
wrong way.

TREF
(Default Value = 518.67)

TREF = 518.67

The TREF keyword sets the dimensional value (in degrees Rankine) of the
reference total temperature used to nondimensionalize the
ow�eld. For
viscous
ows, this value must be accurately speci�ed in order to properly set
the nondimensional
ow viscosity, (and hence, the Reynolds number). This
value is also important for the speci�cation of wall temperature used in the
viscous wall boundary condition SSVI, SS2DVI (see the description of the
boundary data �le, Section 3.7). For inviscid
ow predictions, this value
has no real signi�cance because of the similarity of inviscid
ows with Mach
number. It is very important to choose an average representative value for
this variable, such that the nondimensional total temperature at any point
in the
ow is near a value of 1.0. An extended discussion on the reason for
this choice is given in the description of RMACH.

VIS2
(Default Value = 1/2)

68 ADPAC08 Standard Input File Description

VIS2 = 0.5

The VIS2 keyword de�nes the value of the second order added dissipation
term used in the �ne mesh time-marching solver (see the Final Report [1]).
This value is a simple multiplier of the second order dissipation term, and
hence, larger values imply more added dissipation. Second order dissipation is
used mainly to control the solution in the vicinity of
ow discontinuities such
as shock waves, but can also be important in any high gradient region. The
recommended value is 0.5, but values from 0.0 (no second order dissipation)
to 2.0 may be necessary. Any value larger than 2.0 is of questionable use, as
the added dissipation will likely dominate the solution.

VIS4
(Default Value = 1/64)

VIS4 = 0.015625

The VIS4 keyword de�nes the value of the fourth order added dissipation
term used in the �ne mesh time-marching solver (see the Final Report [1]).
This value is a simple multiplier of the fourth order dissipation term, and
hence, larger values imply more added dissipation. Fourth order dissipation
is used mainly to provide a background dissipation to control the odd/even
point decoupling associated with centered di�erencing schemes. The recom-
mended value is 0.015625 (1/64), but values from 0.0 (no fourth order dissi-
pation) to 0.0625 (1/16) may be necessary. Any value larger than 0.0625 is of
questionable use, as the added dissipation will likely dominate the solution.

VISCG2
Format:(Default Value = 1/8)

VISCG2 = 0.125

The VISCG2 keyword controls the value of the second order added dissi-
pation coe�cient for coarse mesh subiterations during the multigrid time-
marching solution process. Coarse mesh subiterations utilize a simpler dis-
sipation scheme than the �ne mesh time-marching scheme, and therefore, a
di�erent damping constant is required. Larger values imply increased added
dissipation. The recommended value is VISCG2 = 0.125, although values
from 0.0 (no dissipation) to 1.0 are possible. Values larger than 1.0 are not

ADPAC08 Boundary Data File Description 69

recommended as the solution would then likely be dominated by the dissipa-
tion.

XTRANSS, XTRANPS
(Default Value = 0.0)

XTRANSS = 0.0

XTRANPS = 0.0

The XTRANSS, XTRANPS keywords determine the percentage of axial
chord at which transition is forced to occur for the point transition model in
the ADPAC08 body centered mesh turbulence model activated by the key-
word FTURBCHT. This simpli�ed transition model maintains laminar
ow
until the percentage of axial chord indicated byXTRANSS, XTRANPS is
exceeded at which point complete transition is forced. Separate variables are
provided for the \suction side" and \pressure side", respectively, of the airfoil
in question. The transition model parameters are illustrated in Figure 3.1.
Fully turbulent (nontransitional)
ows should setXTRANSS, XTRANPS
to 0.0 (transition occurs at leading edge). Other values must be determined
on a case by case basis.

ZETARAT
(Default Value = 0.6)

ZETARAT = 0.6

The keyword ZETARAT controls a parameter used in the eigenvalue scaling
operator in the residual smoothing algorithm (see the Final Report [1]). The
value of ZETARAT represents the exponent the ratio of two coordinate
eigenvalues and therefore large values of ZETARAT (� 0.6) imply increased
biased for meshes with large di�erences in coordinate spacing while small
values of ZETARAT (� 0.5) imply decreased bias for meshes with large
di�erences in coordinate spacing. Normally values between 0.5 and 0.6 are
recommended.

3.7 ADPAC08 Boundary Data File Description

The ADPAC08 boundary data �le contains the user-speci�able parameters
which control the application of boundary conditions on the multiple-block

70 ADPAC08 Boundary Data File Description

mesh during a time-marching solution. These boundary speci�cations de-
termine the location of solid walls, input/output
ow regions, and block-
to-block communication paths. Prior to a detailed discussion of the actual
boundary condition speci�cations, several boundary condition application
concepts should be explained. It is important to understand how boundary
conditions are applied in the ADPAC08 �nite volume solution scheme. Finite
volume solution algorithms typically employ the concept of a phantom cell
to impose boundary conditions on the external faces of a mesh block. This
concept is illustrated graphically for a 2-D mesh representation in Figure 3.3.

A phantom cell is a �ctitious neighboring cell which is utilized in the
application of boundary conditions on the outer boundaries of a mesh block.
Since
ow variables cannot be directly speci�ed at a mesh surface in a �nite
volume solution (the
ow variables are calculated and stored at cell centers,
where the corners of a cell are described by the 8 surrounding mesh points),
the boundary data speci�ed in the phantom cell are utilized to control the

ux condition at the cell faces of the outer boundary of the mesh block, and,
in turn, satisfy a particular boundary condition. All ADPAC08 boundary
condition speci�cations provide data values for phantom cells to implement
a particular mathematical boundary condition on the mesh. It should be
emphasized that the phantom cells are automatically de�ned within the AD-
PAC08 code, and the user need not be concerned about generating �ctitious
points within the mesh to accommodate the boundary condition application
procedure (mesh points need only be generated for the actual
ow domain).

Although boundary conditions are imposed at phantom cells in the nu-
merical solution, the boundary speci�cation is still most conveniently de�ned
in terms of grid points, not computational cells. An illustration of the bound-
ary speci�cation method for ADPAC08 is given in Figure 3.4. All boundary
conditions are speci�ed in terms of the grid points on either an i=constant,
j=constant, or k=constant mesh surface. In practice, these surfaces are typ-
ically on the outer boundaries of the mesh block, but it is also possible to
impose a boundary on the interior of a mesh block (see the description of the
boundary speci�cations KILL and KIL2D, below).

The third important aspect of the application of boundary conditions in
the ADPAC08 code involves the order in which boundary conditions are ap-
plied. During the execution of the ADPAC08 code, all boundary conditions
are applied to the various mesh blocks in the order in which they are speci�ed

ADPAC08 Boundary Data File Description 71

2−D Mesh Block Phantom Cell Representation

Grid Point

Mesh Block Boundary

Phantom Cell Representation

Grid Line

i

j

Boundary condition specifications control the
flow variables for the phantom cells adjacent to
the mesh block boundary

"Corner" phantom cells cannot be controlled
through boundary conditions, but must be updated
to accurately compute grid point averaged values

Figure 3.3: 2-D Mesh Block Phantom Cell Representation

72 ADPAC08 Boundary Data File Description

Boundary condition "patch"
on a k=constant face

Boundary condition "patch"
on a j=constant face

Boundary condition "patch"
on an i=constant face

ADPAC 3−D Boundary Condition Specification

All block boundary conditions are specified as a grid−defined
"patch" on an i=constant, j=constant, or k=constant mesh face

ik

j

Patches may be internal to the mesh as well

Figure 3.4: ADPAC08 3-D Boundary Condition Speci�cation

ADPAC08 Boundary Data File Description 73

Boundarycondition"B"applied
after boundary condition "A"− part
of boundary condition "A" is
overwritten

Boundary condition "A" applied first Boundarycondition"C"applied
after boundary condition "B" and
"A"−part of boundary conditions
"B"and"A"areoverwritten

Effect of Ordering in Application of Boundary
Conditions for ADPAC Code

Computational Domain

Figure 3.5: E�ect of Ordering in Application of Boundary Conditions for the
ADPAC08 Code

74 ADPAC08 Boundary Data File Description

in the case.boundata �le. As a result, it is possible to overwrite a previously
speci�ed boundary patch with a di�erent boundary condition than was origi-
nally speci�ed. This concept is illustrated graphically in Figure 3.5. The user
must take proper precautions to prohibit accidentally overwriting a desired
boundary patch as the ADPAC08 code cannot distinguish the proper order
for the user.

During code execution, the boundary data �le is read one line at a time
as a character string, and each string is parsed sequentially to determine
the speci�c program action in each case. The boundary data �le utilizes a
keyword input format, such that any line which does not contain a recogniz-
able keyword is treated as a comment line. Therefore, the user may place
any number of comments in the �le (so long as the line does not contain a
keyword input string in the form described below), and code execution is un-
altered. All boundary data �le lines are echoed to the standard output, and
the program response to each line is listed when a speci�c action is taken. A
line in the boundary data �le can also be e�ectively commented by inserting
a # character in the �rst column. Therefore the lines

PATCH 1 1 K K P M I J 1 17 1 129 1 17 1 129 1 17

PATCH 2 2 K K P M I J 1 17 1 129 1 17 1 129 1 17

are acceptable boundary speci�cations; however, the lines

#PATCH 1 1 K K P M I J 1 17 1 129 1 17 1 129 1 17

#PATCH 2 2 K K P M I J 1 17 1 129 1 17 1 129 1 17

would be neglected.

All keyword input lines are given in the format listed in Figure 3.6. The
actual speci�cation in the boundary data �le may be free format, as long as
the individual parameter speci�cations are given in the correct order and are
separated by one or more blank spaces.

All boundary speci�cations begin with a line containing 19 variables as
outlined by the vertical labels in Figure 3.6. A description of the function of
each of the variables in the boundary speci�cation line is given in the proper
order in the section below:

ADPAC08 Boundary Data File Description 75

CASE.BOUNDATA FILE

condition applications are represented by 1 or more lines in this file.
This file contains case-specific boundary data information. All boundary

A sample line is given in the highlighted region below:

This is the keyword
describing the type of
boundary condition to

This is the mesh block
number to which
the boundary data
is applied

This is the mesh block
number from which
the boundary data
is derived

This indicates the
grid surface (i,j,k)
to which the boundary
data is applied in block
LBLOCK1

This indicates the
grid surface (i,j,k)
from which the boundary
data is derived in block
LBLOCK2

This indicates the direction
(+=P, -=M) along the LFACE1
coordinate which travels towards
the interior of the flow (away from
the bounding surface) in mesh

This indicates the direction
(+=P, -=M) along the LFACE2
cooridinate which travels towards
the interior of the flow (away from
the bounding surface) in mesh

These are triggers resverved
for special use in some
boundary conditions (usually

This is the index in the
LDIR1 direction for
boundary data in block
LBLOCK1

This is the index in the
LDIR2 direction for
boundary data in block
LBLOCK2

These are the begining
and ending indices for
the remaining coordinate
directions in block
LBLOCK1 to which
boundary data is applied

These are the begining
and ending indices for
the corresponding coordinate
directions in block
LBLOCK1 from which
boundary data is applied

MM
1 1
L
I
M

L
I
M

N N
1
L
I
M

2 1
M
I
L
1

2

M
2
L
I
M
1

M
2
L
I
M
2

N
2
L
I
M
1

N
2
L

M
2

I

17 1 17 1 17 1 17

C
T
Y
P
E

L

L
O
C

L L L LL

L
I
M

2D
I
R

I
D

L
I

1

K
1

L

C
O

K
2

R

B
B B F

A
C
E
1

L
F
A
C
E
2

1

L

2

L
S
P
E
C
1

L
S
P
E
C
2 1

M

SSIN 1 1 J J P P L L 1 1 1

boundary condition toboundary condition to

be applied

block LBLOCK1 block LBLOCK2

the value I,J, or K, which indicates

the correspondance of the coordinates

in mesh block LBLOCK2 with the

remaining (non LFACE1) coordinates

in mesh block LBLOCK1

Figure 3.6: ADPAC08 Boundary Data File Speci�cation Format

76 ADPAC08 Boundary Data File Description

Description of Boundary Speci�cation Line Variables

BCTYPE The �rst variable, BCTYPE, is a character string de�n-
ing the type of boundary condition to be applied to a
given mesh block. BCTYPE must correspond to one of
the reserved boundary condition keywords de�ned later in
this section to be a proper boundary speci�cation. If BC-
TYPE is not one of the reserved names, then the bound-
ary speci�cation line is ignored.

LBLOCK1 The variable LBLOCK1 is an integer de�ning the grid
block number to which the boundary condition implied by
BCTYPE is applied. Naturally, this implies LBLOCK1
�1, and LBLOCK1 � NBLKS, where NBLKS repre-
sents the last mesh block number.

LBLOCK2 The variable LBLOCK2 is an integer de�ning the grid
block number from which the boundary condition data im-
plied byBCTYPE and applied to mesh block LBLOCK1
is obtained. In some cases, a boundary speci�cation may
involve more than one block (patching two blocks together
is an example), and the LBLOCK2 variable is provided
for this purpose. The value of the LBLOCK2 variable is
only used in certain routines, but it is a good idea to be
consistent in every boundary speci�cation by duplicating
the LBLOCK1 value for the LBLOCK2 variable if only
a single mesh block is involved in a boundary speci�cation
(If the boundary speci�cation only involves a single block,
then set LBLOCK2 = LBLOCK1).

LFACE1 The variable LFACE1 is a single character (one of the
letters I, J, or K) specifying the grid plane (i=constant,
j=constant, or k=constant) to which the boundary con-
dition is applied in block LBLOCK1. This speci�cation
determines the grid face to which the boundary speci�ca-
tion is applied, based on the method by which boundary
conditions are implemented in the �nite-volume solution
scheme (see the discussion and �gures above).

LFACE2 The variable LFACE2 is a single character (one of the

ADPAC08 Boundary Data File Description 77

letters I, J, or K) specifying the grid plane (i=constant,
j=constant, or k=constant) from which the boundary con-
dition data is derived in block LBLOCK2. This speci�ca-
tion determines the grid face from which the neighboring
block boundary data is derived, based on the method by
which boundary conditions are implemented in the �nite-
volume solution scheme (see the discussion and �gures
above). Naturally, this variable is only useful for bound-
ary speci�cations involving more than one block. If only
one block is involved, simply set LFACE2 = LFACE1.

LDIR1 The variable LDIR1 is a single character (one of the let-
ters P or M) specifying the direction (P=plus, M=minus)
along the LDIR1 coordinate in LBLOCK1 which is di-
rected away (towards the interior
ow region) from the
boundary surface patch. The speci�cation of this variable
is normally automatic when the boundary speci�cation is
applied to the external surface of a grid block - (LDIR1 =
P when L1LIM = 1, and LDIR1 = M when L1LIM =
IMX,JMX, or KMX. (IMX,JMX,KMX indicate the maxi-
mum indices of the LBLOCK1mesh block in the i, j, and
k directions, respectively). The intent here is to provide
a means of specifying which side of the boundary surface
plane the interior computational cells (non-phantom cells)
lie on. This speci�cation is made by providing the coor-
dinate direction of the interior computational cells - the
phantom cells are then assumed to lie in the opposite di-
rection.

LDIR2 The variable LDIR2 is a single character (one of the let-
ters P or M) specifying the direction (P=plus, M=minus)
along the LDIR2 coordinate in LBLOCK2 which is away
(towards the interior
ow region) from the boundary sur-
face patch. This variable is only used in boundary speci-
�cations cases involving more than one mesh block. The
speci�cation of this variable is normally automatic when
the boundary speci�cation data is obtained from the ex-
ternal surface of a neighboring grid block - (LDIR2 = P

78 ADPAC08 Boundary Data File Description

when L2LIM = 1, and LDIR2 = M when L2LIM =
IMX,JMX, or KMX. (IMX,JMX,KMX indicate the max-
imum indices of the LBLOCK2 mesh block in the i, j,
and k directions, respectively). The intent here is to pro-
vide a means of specifying which side of the boundary sur-
face plane the interior computational cells (non-phantom
cells) lie on. This speci�cation is made by providing the
coordinate direction of the interior computational cells -
the phantom cells are then assumed to lie in the opposite
direction. If the boundary speci�cation involves only a
single mesh block, then simply set LDIR2 = LDIR1.

LSPEC1 The variable LSPEC1 is a single character (usually I,
J, K, L, or H) which implies some special information
about the boundary condition speci�cation. This param-
eter is boundary condition dependent. The most common
application of this variable is in the boundary data �le
keyword PATCH, which provides the cell-to-cell connec-
tion for two grid blocks with a mating contiguous sur-
face. For boundary conditions involving more than one
mesh block (such as PATCH), it is possible that the
connection between blocks may involve connections be-
tween di�erent grid surfaces, and that the indices in block
LBLOCK2 correspond to a di�erent coordinate in block
LBLOCK1. In the case of a PATCH boundary condi-
tion, the LSPEC1 variable determines the grid coordi-
nate direction in the LBLOCK1 mesh block which cor-
responds with the �rst remaining grid coordinate in mesh
block LBLOCK2. (The extent of the �rst remaining co-
ordinate in mesh block LBLOCK2 is determined by the
values of M2LIM1 and M2LIM2)

LSPEC2 The variable LSPEC2 is a single character (usually I, J,
K, L, or H) which implies some special information about
the boundary condition speci�cation. This parameter is
usually boundary condition dependent. The most com-
mon application of this variable is in the boundary data
�le keyword PATCH, which provides the cell-to-cell con-

ADPAC08 Boundary Data File Description 79

nection for two grid blocks with a mating contiguous sur-
face. For boundary conditions involving more than one
mesh block (such as PATCH), it is possible that the
connection between blocks may involve connections be-
tween di�erent grid surfaces, and that the indices in block
LBLOCK2 correspond to a di�erent coordinate in block
LBLOCK1. In the case of a PATCH boundary condi-
tion, the LSPEC2 variable determines the grid coordi-
nate direction in the LBLOCK1 mesh block which corre-
sponds with the second remaining grid coordinate in mesh
block LBLOCK2. (The extent of the second remaining
coordinate in mesh block LBLOCK2 is determined by
the values of N2LIM1 and N2LIM2)

L1LIM The variable L1LIM is an integer specifying the index of
the grid in the LFACE1 direction to which the boundary
condition should be applied in block LBLOCK1. This
value determines the actual mesh index of the i=constant,
j=constant, or k=constant mesh face (determined by LFACE1)
to which the boundary condition is applied in mesh block
LBLOCK1.

L2LIM The variable L2LIM is an integer specifying the index of
the grid in the LFACE2 direction from which the bound-
ary condition data is derived in block LBLOCK2. This
value determines the actual mesh index of the i=constant,
j=constant, or k=constant mesh face (determined by LFACE2)
from which the boundary condition data is derived in mesh
block LBLOCK2.

M1LIM1 The variable M1LIM1 is an integer representing the ini-
tial index of the �rst remaining grid coordinate direc-
tion to which the boundary condition is applied in block
LBLOCK1. Since the boundary speci�cation applies to
either an i=constant, j=constant, or k=constant surface,
the variablesM1LIM1, M1LIM2, N1LIM1 andN1LIM2
determine the extent of the patch in the remaining coor-
dinate directions. The remaining coordinate directions for
block LBLOCK1 are speci�ed in the natural order. (For

80 ADPAC08 Boundary Data File Description

example, if LFACE1=I, then the variables M1LIM1,
M1LIM2 refer to the extent in the j direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k
direction. If LFACE1=J , then the variables M1LIM1,
M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k
direction. If LFACE1=K, then the variables M1LIM1,
M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the j
direction.) The indices speci�ed inM1LIM1 andM1LIM2
must be given in increasing order. The indices speci�ed in
N1LIM1 and N1LIM2 must also be given in increasing
order.

M1LIM2 The variable M1LIM2 is an integer representing the �-
nal index of the �rst remaining grid coordinate direction to
which the boundary condition is applied in block LBLOCK1.
Since the boundary speci�cation applies to either an i=constant,
j=constant, or k=constant surface, the variablesM1LIM1,
M1LIM2, N1LIM1 and N1LIM2 determine the extent
of the patch in the remaining coordinate directions. The
remaining coordinate directions for block LBLOCK1 are
speci�ed in the natural order. (For example, if LFACE1=I,
then the variables M1LIM1, M1LIM2 refer to the ex-
tent in the j direction and the variablesN1LIM1, N1LIM2
refer to the extent in the k direction. If LFACE1=J , then
the variables M1LIM1, M1LIM2 refer to the extent in
the i direction and the variables N1LIM1, N1LIM2 re-
fer to the extent in the k direction. If LFACE1=K, then
the variables M1LIM1, M1LIM2 refer to the extent in
the i direction and the variables N1LIM1, N1LIM2 re-
fer to the extent in the j direction.) The indices speci�ed
in M1LIM1 and M1LIM2 must be given in increasing
order. The indices speci�ed in N1LIM1 and N1LIM2
must also be given in increasing order.

N1LIM1 The variable N1LIM1 is an integer representing the ini-
tial index of the second remaining grid coordinate direc-

ADPAC08 Boundary Data File Description 81

tion to which the boundary condition is applied in block
LBLOCK1. Since the boundary speci�cation applies to
either an i=constant, j=constant, or k=constant surface,
the variablesM1LIM1, M1LIM2, N1LIM1 andN1LIM2
determine the extent of the patch in the remaining coor-
dinate directions. The remaining coordinate directions for
block LBLOCK1 are speci�ed in the natural order. (For
example, if LFACE1=I, then the variables M1LIM1,
M1LIM2 refer to the extent in the j direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k
direction. If LFACE1=J , then the variables M1LIM1,
M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k
direction. If LFACE1=K, then the variables M1LIM1,
M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the j
direction.) The indices speci�ed inM1LIM1 andM1LIM2
must be given in increasing order. The indices speci�ed
in N1LIM1 and N1LIM2 must also be given in increas-
ing order. For boundaries on 2-D mesh blocks, this must
always be 1.

N1LIM2 The variable N1LIM2 is an integer representing the �-
nal index of the second remaining grid coordinate direc-
tion to which the boundary condition is applied in block
LBLOCK1. Since the boundary speci�cation applies to
either an i=constant, j=constant, or k=constant surface,
the variablesM1LIM1, M1LIM2, N1LIM1 andN1LIM2
determine the extent of the patch in the remaining coor-
dinate directions. The remaining coordinate directions for
block LBLOCK1 are speci�ed in the natural order. (For
example, if LFACE1=I, then the variables M1LIM1,
M1LIM2 refer to the extent in the j direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k
direction. If LFACE1=J , then the variables M1LIM1,
M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the k

82 ADPAC08 Boundary Data File Description

direction. If LFACE1=K, then the variables M1LIM1,
M1LIM2 refer to the extent in the i direction and the
variables N1LIM1, N1LIM2 refer to the extent in the j
direction.) The indices speci�ed inM1LIM1 andM1LIM2
must be given in increasing order. The indices speci�ed
in N1LIM1 and N1LIM2 must also be given in increas-
ing order. For boundaries on 2-D mesh blocks, this must
always be 2.

M2LIM1 The variable M2LIM1 is an integer representing the ini-
tial index of the grid coordinate direction in block LBLOCK2
corresponding to the �rst remaining coordinate in block
LBLOCK1. For boundary conditions involving more than
one mesh block, it is possible that the connection be-
tween blocks may involve connections between di�erent
grid surfaces, and that the indices in block LBLOCK2
correspond to a di�erent coordinate in block LBLOCK1.
The variablesM2LIM1, M2LIM2 control the indices in
the LSPEC1 direction in block LBLOCK2 which corre-
spond to the indices determined by M1LIM1, M1LIM2
in block LBLOCK1. The user should note that it is possi-
ble forM2LIM1 >M2LIM2 andN2LIM1 >N2LIM2
but it is not possible forM1LIM1 >M1LIM2 andN1LIM1
> N1LIM2. If only a single mesh block is involved in the
boundary speci�cation, set M2LIM1 = M1LIM1.

M2LIM2 The variableM2LIM2 is an integer representing the �nal
index of the grid coordinate direction in block LBLOCK2
corresponding to the �rst remaining coordinate in block
LBLOCK1. For boundary conditions involving more than
one mesh block, it is possible that the connection be-
tween blocks may involve connections between di�erent
grid surfaces, and that the indices in block LBLOCK2
correspond to a di�erent coordinate in block LBLOCK1.
The variablesM2LIM1, M2LIM2 control the indices in
the LSPEC1 direction in block LBLOCK2 which corre-
spond to the indices determined by M1LIM1, M1LIM2
in block LBLOCK1. The user should note that it is possi-

ADPAC08 Boundary Data File Description 83

ble forM2LIM1 >M2LIM2 andN2LIM1 >N2LIM2
but it is not possible forM1LIM1>M1LIM2 andN1LIM1
> N1LIM2. If only a single mesh block is involved in the
boundary speci�cation, set M2LIM2 = M1LIM2.

N2LIM1 The variable N2LIM1 is an integer representing the ini-
tial index of the grid coordinate direction in block LBLOCK2
corresponding to the second remaining coordinate in block
LBLOCK1. For boundary conditions involving more than
one mesh block, it is possible that the connection be-
tween blocks may involve connections between di�erent
grid surfaces, and that the indices in block LBLOCK2
correspond to a di�erent coordinate in block LBLOCK1.
The variables N2LIM1, N2LIM2 control the indices in
the LSPEC2 direction in block LBLOCK2 which corre-
spond to the indices determined by N1LIM1, N1LIM2
in block LBLOCK1. The user should note that it is possi-
ble forM2LIM1 >M2LIM2 andN2LIM1 >N2LIM2
but it is not possible forM1LIM1>M1LIM2 andN1LIM1
> N1LIM2. If only a single mesh block is involved in the
boundary speci�cation, set N2LIM1 = N1LIM1. For
boundary data on 2-D mesh blocks, this must always be
1.

N2LIM2 The variable N2LIM2 is an integer representing the �nal
index of the grid coordinate direction in block LBLOCK2
corresponding to the second remaining coordinate in block
LBLOCK1. For boundary conditions involving more than
one mesh block, it is possible that the connection be-
tween blocks may involve connections between di�erent
grid surfaces, and that the indices in block LBLOCK2
correspond to a di�erent coordinate in block LBLOCK1.
The variables N2LIM1, N2LIM2 control the indices in
the LSPEC2 direction in block LBLOCK2 which corre-
spond to the indices determined by N1LIM1, N1LIM2
in block LBLOCK1. The user should note that it is possi-
ble forM2LIM1 >M2LIM2 andN2LIM1 >N2LIM2
but it is not possible forM1LIM1>M1LIM2 andN1LIM1

84 ADPAC08 Boundary Data File Description

> N1LIM2. If only a single mesh block is involved in the
boundary speci�cation, set N2LIM2 = N1LIM2. For
boundary data on 2-D mesh blocks, this must always be
2.

Some boundary condition speci�cations require additional data beyond
that incorporated in the boundary speci�cation line. In these cases, described
in detail for the speci�c boundary types later in this Section, the additional
data is included immediately after the boundary speci�cation line.

A sample ADPAC08 boundary data �le containing several keywords is
listed below.

Sample ADPAC-AOACR Boundary Data File

--

ADPAC Boundata File Generated by SETUP-Version 1.0

Apr 15 1992, at 17:36:38

--

This file contains block boundary condition data information for the

ADPAC-AOACR multiple grid block Euler-Navier-Stokes code. All boundary

specifications begin with a line containing the variables:

The routine selected is for a two-block 3-D H-grid

about a ducted propfan as shown below:

I-J Plane

J=JL ---

|Block #2 COWL|<--MIXING PLANE |

| I=IGCLE | | I=IGCTE |

| (COWL L.E.)______V_|______ (COWL T.E.) |

|-------------<_______________>---------------|

| ____ | ____ |

| J=JTIP/ | | / |<--- BLADE |

| / / | / / |

| | / | | / |

|Block #1 --------------------- |

ADPAC08 Boundary Data File Description 85

| / I=ILE I=ITE | |

J=1 -----------/ LEADING TRAILING -----------

I=1 I=ISLE EDGE EDGE I=ISTE I=IL

SPINNER SPINNER

LEADING EDGE TRAILING EDGE

I-K Plane

K=KL ------------- ----- ------------

| |______| | |_____| |

| A | A |

| | | | |

| BLADE SURFACE | BLADE SURFACE |

| | | | |

| (Odd # blocks | | | |

| only) | | | |

| | |<-------- MIXING |

| | | | PLANE |

| ___V__ | __V__ |

K=1 -------------| |----| |-----------

I=1 I=ILE I=ITE I=IL

BLOCKDATA FOLLOWS: LABELS

B L L L L L L L L L L M M N N M M N N C

C B B F F D D S S 1 2 1 1 1 1 2 2 2 2 O

T L L A A I I P P L L L L L L L L L L M

Y O O C C R R E E I I I I I I I I I I M

P C C E E 1 2 C C M M M M M M M M M M E

E K K 1 2 1 2 1 2 1 2 1 2 1 2 N

1 2 T

------ -- -- -- -- -- -- -- -- --- --- --- --- --- --- --- --- --- --- ---------

PATCH 1 1 K K P M I J 1 17 1 129 1 17 1 129 1 17 %K=1 Per

PATCH 2 2 K K P M I J 1 17 1 129 1 17 1 129 1 17 %K=1 Per

PATCH 3 3 K K P M I J 1 17 1 97 1 17 1 97 1 17 %K=1 Per

PATCH 4 4 K K P M I J 1 17 1 97 1 17 1 97 1 17 %K=1 Per

86 ADPAC08 Boundary Data File Description

PATCH 1 1 K K M P I J 17 1 1 129 1 17 1 129 1 17 %K=KL Pe

PATCH 2 2 K K M P I J 17 1 1 129 1 17 1 129 1 17 %K=KL Pe

PATCH 3 3 K K M P I J 17 1 1 97 1 17 1 97 1 17 %K=KL Pe

PATCH 4 4 K K M P I J 17 1 1 97 1 17 1 97 1 17 %K=KL Pe

SSIN 1 1 J J P P S S 1 1 1 129 1 17 1 129 1 17 %Hub Inv

SSIN 3 3 J J P P S S 1 1 1 97 1 17 1 97 1 17 %Hub Inv

SSIN 1 1 K K P P S S 1 1 81 113 1 17 81 113 1 17 %K=1 Bl

SSIN 1 1 K K M M S S 17 17 81 113 1 17 81 113 1 17 %K=KL Bl

SSIN 3 3 K K P P S S 1 1 17 49 1 17 17 49 1 17 %K=1 Bl

SSIN 3 3 K K M M S S 17 17 17 49 1 17 17 49 1 17 %K=KL Bl

#INLETA 1 1 I I P P S S 1 1 1 17 1 17 1 17 1 17 %Inlet

PT TT ALPHA

1.000000 1.000000 0.000000

#INLETA 2 2 I I P P S S 1 1 1 17 1 17 1 17 1 17 %Inlet

PT TT ALPHA

1.000000 1.000000 0.000000

EXITP 3 3 I I M M H H 97 97 1 17 1 17 1 17 1 17 %Inlet

NBOUN IBOUN JBOUN

000004 000097 000001

EXITT 4 4 I I M M H H 97 97 1 17 1 17 1 17 1 17 %Inlet

PEXIT

0.3609139

FREE 2 2 J J M M S S 17 17 1 129 1 17 1 129 1 17 %Free fl

PT TT MACH(INF) ALPHA

1.000000 1.000000 1.300000 0.000000

FREE 4 4 J J M M S S 17 17 1 97 1 17 1 97 1 17 %Free fl

PT TT MACH(INF) ALPHA

1.000000 1.000000 1.300000 0.000000

PATCH 1 2 J J M P I J 17 1 1 129 1 17 1 129 1 17 %Ptch 1-

PATCH 2 1 J J P M I J 1 17 1 129 1 17 1 129 1 17 %Ptch 1-

PATCH 3 4 J J M P I J 17 1 1 97 1 17 1 97 1 17 %Ptch 1-

PATCH 4 3 J J P M I J 1 17 1 97 1 17 1 97 1 17 %Ptch 1-

SSIN 1 1 J J M M S S 17 17 33 129 1 17 33 129 1 17 %COWL 1

SSIN 2 2 J J P P S S 1 1 33 129 1 17 33 129 1 17 %COWL 2

SSIN 3 3 J J M M S S 17 17 1 81 1 17 1 81 1 17 %COWL 1

SSIN 4 4 J J P P S S 1 1 1 81 1 17 1 81 1 17 %COWL 2

MBCAVG 1 3 I I M P J K 129 1 1 17 1 17 1 17 1 17 %Mixing

ADPAC08 Boundary Data File Description 87

NSEGS

1

BLK LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

3 I P 1 1 17 1 17

MBCAVG 2 4 I I M P J K 129 1 1 17 1 17 1 17 1 17 %Mixing

NSEGS

1

BLK LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

4 I P 1 1 17 1 17

MBCAVG 3 1 I I P M J K 1 129 1 17 1 17 1 17 1 17 %Mixing

NSEGS

1

BLK LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

1 I M 129 1 17 1 17

MBCAVG 4 2 I I P M J K 1 129 1 17 1 17 1 17 1 17 %Mixing

NSEGS

1

BLK LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

2 I M 129 1 17 1 17

ENDDATA

A list and description of all valid boundary data keywords and any ad-
ditional data required for the given boundary condition is now presented in
the pages which follow. A quick reference to the boundary data �le keywords
is provided in Appendix C.

88 BCINT1 - ADPAC08 Boundary Data File Speci�cations

BCINT1

BCINT1 Type Non-Contiguous Mesh Block In-
terface Patching Scheme

Mesh Block #2
(51x11x51)

i
k j

Non−Contiguous Mesh Block Interface Along
Wake Cut Line Can Employ a BCINT1 Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #1
(193x25x1)

Application

The BCINT1 speci�cation is used in any application involving neighboring
mesh blocks with a non-contiguous interface in one direction. The interface
must be contiguous in the other direction. BCINT1 patches one block to
one other block by interpolation along the non-contiguous index.

The example graphic above illustrates a two-dimensional mesh system

ADPAC08 Boundary Data File Speci�cations - BCINT1 89

used to predict the
ow through a turbine vane passage. The C-type mesh
utilizes a noncontiguous wake cut line as shown in the trailing edge detail.
The BCINT1 speci�cation is applied along either side of the wake cut line
to permit communication of
ow variables across the noncontiguous mesh
interface. Here, the interpolation direction is i, and part of the block is
patched to itself. Note that the i index increases in di�erent directions at the
wake cut line. BCINT1 can handle interpolation along any index, regardless
of the orientation of the mating surface.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the BCINT1 boundary condition are given below:

BCINT1 1 1 J J P P L L 1 1 1 33 1 2 193 177 1 2

IDIRNT1 IDIRNT2

I I

BCINT1 1 1 J J P P L L 1 1 177 193 1 2 33 1 1 2

IDIRNT1 IDIRNT2

I I

Note that a completeBCINT1 speci�cation generally requires twoBCINT1
statement lines in the boundary data �le. In the example above, the �rst
speci�cation provides the interblock communication for one side of the C-grid
wake cut, while the second speci�cation provides the communication for the
other side of the C-grid wake cut. It is a common error to underspecify a
BCINT1 boundary by only providing a single line per interface.

Description

The BCINT1 boundary statement provides a means for block to block com-
munication for cases involving neighboring mesh boundaries which share a
common surface, but are non-contiguous in one grid index. BCINT1 can
be applied to either stationary or rotating block interfaces, but the results
are physically correct only if both blocks are rotating at the same speed.

90 BCINT1 - ADPAC08 Boundary Data File Speci�cations

(The BCPRR speci�cation should be used for cases with relatively rotat-
ing blocks.) A proper BCINT1 boundary is speci�ed much like a PATCH
boundary. The LFACE1 and LFACE2 determine which faces are mated
together. BCINT1 also requires the speci�cation of additional information.
The �rst line after the BCINT1 speci�cation may contain any information;
however, for consistency, it is recommended that the labels INTDIR1 and
INTDIR2 be used. The non-contiguous index in each block is the interpola-
tion direction, which is speci�ed as INTDIR1 or INTDIR2. The blocks are
assumed to be contiguous in the remaining index. The M2LIM or N2LIM
variables are speci�ed much as they would be for a PATCH speci�cation.
The exception is that the number of points spanned by the limits in the
direction of interpolation need not be equal.

The search routine which determines the interpolation stencil assumes
that the mating grid lines are piecewise linear approximations to the same
curve in the interpolation direction. A global search is performed for the
proper mating cell of the �rst index. The closest cell to the point of interest
is taken as the mating cell. A localized search is performed for the mating
cells of the remaining points. The local search starts at the mating cell of
the preceding point and searches along the mating boundary until the mating
cell containing the new point is found. In the event that the mating cell is
not found before the upper limit is reached in the mating block, the search
continues from the lower limit in the mating block. This implies two things:
the physical domain of the interpolation must be the same in the two blocks,
and the domain is assumed to be periodic if the search routine goes past an
endpoint.

Restrictions/Limitations

The BCINT1 boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap).

Generally, endpoints of the interpolated region in the two blocks should
be coincident. There is at least one exception to this rule based on the
above description of the search routine. In the case of concentric O-grids,
the endpoints of the two blocks may be misaligned as shown in the �gure
below. The interpolation routine will �nd the appropriate stencil for each

ADPAC08 Boundary Data File Speci�cations - BCINT1 91

point because the grids are periodic.

Mesh Block 1

i = 1

Mesh Block 2

i = 1

i

j

The BCINT1 condition reduces to a PATCH condition if the mating
blocks are actually contiguous. However, due to the linear interpolation used
inBCINT1, the scheme does not maintain either global or local conservation
of
ow variables across a non-contiguous mesh interface.

The BCINT1 condition also performs the same function as the TRAF
condition, but with fewer restrictions. The TRAF condition employs a cubic
spline for interpolation, rather than the linear procedure used by BCINT1.
The BCINT1 condition is the only non-contiguous patching routine which
may be utilized across multiple processors in a parallel computing environ-
ment.

Common Errors

� Failure to provide 2 BCINT1 statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,

92 BCINT1 - ADPAC08 Boundary Data File Speci�cations

N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed index for the interpolation direction for LBLOCK1
or LBLOCK2.

� Attempt to use BCINT1 for a boundary which has 2 misaligned co-
ordinates.

� Attempt to use BCINT1 for boundaries which are not monotonic
along the interpolated index.

ADPAC08 Boundary Data File Speci�cations - BCINTM 93

BCINTM

BCINTMType Non-Contiguous Mesh Block In-
terface Patching Scheme

J

I

Block 1
(5 x 5)

Block 2
(9 x 3)

Block 3
(6 x 4)

Block 4
(6 x 3)

Block 5
(7 x 4)

CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC
CCCCCCCCC

BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB
BBBBBBBBBB

CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC
CCCCCCCCCCC

Multiblock Non−Contiguous Interface

Non−contiguous mesh block interface involving multiple blocks
requires a BCINTM specification (illustrated in boundary data file
format statements below

Application

The BCINTM speci�cation is used in any application involving neighboring
mesh blocks with a non-contiguous mesh interface in one coordinate direc-
tion. The interface must be contiguous in the remaining coordinate direc-
tion. BCINTM provides a mechanism whereby noncontiguous boundaries
involving groups of blocks may be coupled to other groups of blocks by inter-

94 BCINTM - ADPAC08 Boundary Data File Speci�cations

polation along the non-contiguous index. BCINTM is a multi-block version
of BCINT1.

The example graphic above illustrates a two-dimensional mesh system
used to predict the
ow through a stepped duct passage. The grid was
constructed with a non-contiguous interface between the various blocks on
the top and bottom of the duct. The BCINTM speci�cation is applied along
either side of the interface to permit communication of
ow variables along
the interface. Here, the interpolation direction is the i coordinate direction.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the BCINTM boundary condition are given below:

BCINTM 1 3 J J P M I K 1 4 1 5 1 1 1 5 1 1

INTDIR1 INTDIR2 - DIRECTION OF INTERPOLATION

I I

ISHFTDR DSHIFT

2 0.0

NBLINT2 - NUMBER OF LBLOCK2 BLOCKS

3

NBLDAT LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

3 J M 4 1 5 1 1

4 J M 3 1 6 1 1

5 J M 4 1 7 1 1

NBLINT1 - NUMBER OF LBLOCK1 BLOCKS

2

LBLK1RR LFACE1 LDIR1 L1LIM M1LIM1 M1LIM2 N1LIM1 N1LIM2

1 J P 1 1 5 1 1

2 J P 1 1 9 1 1

BCINTM 3 1 J J M P I K 4 1 1 5 1 1 1 5 1 1

INTDIR1 INTDIR2 - DIRECTION OF INTERPOLATION

I I

ISHFTDR DSHIFT

2 0.0

NBLINT2 - NUMBER OF LBLOCK2 BLOCKS

ADPAC08 Boundary Data File Speci�cations - BCINTM 95

2

NBLDAT LFACE2 LDIR2 L2LIM M2LIM1 M2LIM2 N2LIM1 N2LIM2

1 J P 1 1 5 1 1

2 J P 1 1 9 1 1

NBLINT1 - NUMBER OF LBLOCK1 BLOCKS

3

LBLK1RR LFACE1 LDIR1 L1LIM M1LIM1 M1LIM2 N1LIM1 N1LIM2

3 J M 4 1 5 1 1

4 J M 3 1 6 1 1

5 J M 4 1 7 1 1

Note that a complete BCINTM speci�cation generally requires two
BCINTM statement lines in the boundary data �le. In the example above,
the �rst speci�cation provides the interblock communication for the upper
blocks along the interface, while the second speci�cation provides the com-
munication for the lower blocks along the interface. It is a common error
to underspecify a BCINTM boundary by only providing a single line per
interface.

Description

The BCINTM boundary statement provides a means for block to block
communication for cases involving neighboring mesh boundaries which share
a common surface, but are non-contiguous in one grid index. A proper
BCINTM boundary is speci�ed much like a BCINT1 boundary, except
that all of the blocks involved with a particular interface are speci�ed in
a table on both sides of the interface. A large amount of additional data
is required for each BCINTM speci�cation. The sample application and
speci�cations given above are designed to demonstrate the overall structure
of this boundary condition. In the sample application, a noncontiguous mesh
block interface lies between blocks 1,2 and blocks 3,4,5. A single pair of
BCINTM speci�cations is all that is required to completely couple the
mesh blocks along this interface, in spite of the fact that 5 mesh blocks
are involved in the overall boundary de�nition. The key to this compact
speci�cation is that each BCINTM speci�cation includes tables of data
which specify which blocks lie along the receiving side of the interface (where

96 BCINTM - ADPAC08 Boundary Data File Speci�cations

the boundary data is being applied) and which blocks lie along the sending
side of the interface (where the boundary data is derived). A description
of the various additional speci�cations required for a complete BCINTM
speci�cation are given below.

Immediately following the BCINTM boundary speci�cation line is a se-
ries of multi-line segments which de�ne the details of the boundary coupling.
The �rst segment consists of 4 lines, and describes some general character-
istics of the interpolation along the noncontiguous boundary. The second
segment is the table describing the \sending" blocks from which the bound-
ary data is extracted. The third segment is a table describing the \receiving"
blocks where the boundary data is eventually interpolated and applied. The
second line in a BCINTM speci�cation is a comment line, normally la-
beling the variables INTDIR1 and INTDIR2. The third line de�nes the
variables INTDIR1 and INTDIR2 as either I, J , or K, depending on the
direction of interpolation for the receiving and sending blocks, respectively.
One mesh restriction to note is that BCINTM allows only one interpola-
tion direction for each side of the interface. The fourth line is a comment line
normally labeling the variables ISHFTDR and DSHIFT. The �fth line de-
�nes the values for the variables ISHFTDR and DSHIFT. These variables
provide a mechanism for shifting the boundary in on of the three coordi-
nate directions (x; y; z for Cartesian
ows, or z; r; � for cylindrical
ows).
BCINTM expects that the two sides of the interface lie on a common phys-
ical surface, but the grid itself may not have both sides of the interface in
the same physical location. The most common use for this feature is a non-
contiguous periodic boundary for a single passage turbomachinery blade row
solution. The ISHFTDR and DSHIFT variables are provided to allow
the user to temporarily shift the physical location of the \sending" blocks
to the \receiving" blocks physical location. For the case of a noncontiguous
periodic boundary in a turbine blade row solution, for example, ISHFTDR
would be 3 (shift in the � direction) and the amount of the shift de�ned
by DSHIFT would be the circumferential spacing of the blade rows in ra-
dians. The sixth line in the speci�cation is a comment normally labeling
the variable NBLINT2, and the seventh line speci�es the number of blocks
associated with the LBLOCK2 side of the interface (the \sending" blocks.
The eigth line is again a comment normally labeling the variables NBL-
DAT, LFACE2, LDIR2, L2LIM, M2LIM1, M2LIM2, N2LIM1, and

ADPAC08 Boundary Data File Speci�cations - BCINTM 97

N2LIM2. The next NBLINT2 lines de�ne the table containing the limits,
directions and faces for each of the LBLOCK2 blocks. For each block in
this table, LFACE2 de�nes the coordinate face upon which the interface lies
I, J , or K), and LDIR2 de�nes the direction (P for plus, or M for minus)
along the LFACE2 coordinate which travels away from the bounding surface
(see Section 3.7 for more details). L2LIM de�nes the value of the LFACE2
coordinate upon which the surface is located, andM2LIM1,M2LIM2, and
N2LIM1, and N2LIM2 de�ne the extent of the remaining coordinates for
each of the NBLINT2 blocks in their \natural" order (again see Section 3.7
for more details). Following the table for the LBLOCK2 side of the inter-
face, there is a commment line normally labeling the variable NBLINT1,
followed by a line specifying the number of blocks on the LBLOCK1 side of
the interface. Next a comment line labeling the variables L1LIM,M1LIM1,
M1LIM2, N1LIM1, and N1LIM2 is given. Finally, a table consisting of
NBLINT1 lines de�ning the LBLOCK1 side (\receiving" blocks) informa-
tion similar to the LBLOCK2 (\sending" blocks) table is speci�ed.

BCINTM creates a single interpolation stencil from all of the blocks in
the LBLOCK2 table. This stencil must be monotonic in the INTDIR2
direction. Thus, the blocks in the LBLOCK2 must be speci�ed in the order
they occur physically, and the limits must be speci�ed so that they form a
continous line. The block numbers and extents identi�ed in the �rst line
of the BCINTM speci�cation should match the �rst entry in each of the
respective LBLOCK tables.

As with BCINT1, the search routine which determines the interpolation
stencil assumes that the mating grid lines are piecewise linear approximations
to the same curve in the interpolation direction. A global search is performed
for the proper mating cell of the �rst index. The closest cell to the point of
interest is taken as the mating cell. A localized search is performed for the
mating cells of the remaining points. The local search starts at the mating
cell of the preceding point and searches along the mating boundary until the
mating cell containing the new point is found. In the event that the mating
cell is not found before the upper limit is reached in the mating block, the
search continues from the lower limit in the mating block. This implies two
things: the physical domain of the interpolation must be the same in the two
blocks, and the domain is assumed to be periodic if the search routine goes
past an endpoint.

98 BCINTM - ADPAC08 Boundary Data File Speci�cations

Restrictions/Limitations

The BCINTM boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap). Generally, endpoints of
the interpolated region in the two blocks should be coincident. As with
BCINT1, there is at least one exception to this rule based on the above
description of the search routine. In the case of concentric O-grids, the
endpoints of the two blocks may be misaligned (see the BCINT1 description
for details). The interpolation routine will �nd the appropriate stencil for
each point because the grids are periodic.

The BCINTM condition reduces to a PATCH condition if the mating
blocks are actually contiguous. However, due to the linear interpolation used
in BCINTM, the scheme does not maintain either global or local conserva-
tion of
ow variables across a non-contiguous mesh interface.

The BCINTM condition is the only non-contiguous patching routine for
multiple blocks. The BCINTM condition will run in either serial or parallel
ADPAC08 calculations.

Common Errors

� Failure to provide 2 BCINTM statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed index for the interpolation direction for LBLOCK1
or LBLOCK2.

� Attempt to use BCINTM for a boundary which has 2 misaligned
coordinates.

� Attempt to use BCINTM for boundaries which are not monotonic
along the interpolated index.

ADPAC08 Boundary Data File Speci�cations - BCINTM 99

� Incorrect ordering of the LBLOCK2 table of data.

� Attempt to use BCINTM for interfaces with multiple interpolation
directions on the same side of the interface.

� Attempt to use BCINTM for interfaces with multiple LFACE or
LDIR requirements in the LBLOCK1 table of data.

100 BCPRM - Boundary Data File Speci�cations

BCPRM

Boundary Condition Procedure for Patched Rel-
atively Rotating Mesh Blocks with Multiple Row
1 Patches

Mesh Block #1
(81x6x7)

Mesh Block #3
(81x6x7)

Relatively Rotating Mesh Block Interface Between
Grids in Adjacent Blade Rows Can Employ a BCPRM Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #2
(81x6x7)

Mesh Block #4
(81x6x7)

Mesh Block #5
(81x6x7)

i

k

j

Application

The BCPRM speci�cation is used in application involving neighboring rel-
atively rotating mesh blocks, such as in rotor/stator interaction problems.

Boundary Data File Speci�cations - BCPRM 101

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interface indicated in
the illustrative graphic for the BCPRM boundary condition and a simple
outline of the mesh topography are given below. Note that blocks 1 and 2
require multiple BCPRM entries in the data tables due to the location of
the O-grid cut line. The topography below depicts a multiple passage 3-D
O-grid system for a turbine stage.

I-K Plane

K=KLAST

| ____ |---------------

| / \ | _ |

| <____ \ I=ILAST | / > I=ILAST

| k=1 \ \-------------| / /------|

| \ \ I=1 | / / I=1 |

| \ \ | -/ / |

|Block #2 \> | _/ Block #5|

| |______________|

--------------------------- _ |

| ____ | / > I=ILAST

| / \ | / /------|

| <____ \ I=ILAST | / / I=1 |

| k=1 \ \-------------| -/ / |

| \ \ I=1 | _/ Block #4|

| \ \ |______________|

|Block #1 \> | _ |

| | / > I=ILAST

--------------------------- / /------|

K=KLAST| / / I=1 |

| -/ / |

| _/ Block #3|

|______________|

102 BCPRM - Boundary Data File Speci�cations

I-J Plane

--

| | A | | | A | |

| | | | | | | | |

| | | | | | | | |

| |<---BLADE--->| | |<--->| |

| | #1 | | | #2 | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | V | | | V | |

--

BCPRM 1 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN LBLOCK2 TABLE OF BCPRM SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

NRRDAT - NUMBER OF BLOCKS IN LBLOCK1 TABLE OF BCPRM SPECIFICATION

4

LBLOCK1B LFACE1B LDIR1B L1LIMB M1LIM1B M1LIM2B N1LIM1B N1LIM2B

1 K M 7 1 6 1 6

1 K M 7 76 81 1 6

2 K M 7 1 6 1 6

2 K M 7 76 81 1 6

BCPRM 3 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN LBLOCK2 TABLE OF BCPRM SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

Boundary Data File Speci�cations - BCPRM 103

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

NRRDAT - NUMBER OF BLOCKS IN LBLOCK1 TABLE OF BCPRM SPECIFICATION

3

LBLOCK1B LFACE1B LDIR1B L1LIMB M1LIM1B M1LIM2B N1LIM1B N1LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

Note that a complete BCPRM speci�cation generally requires at least two
BCPRM statement lines in the boundary data �le. In the example above,
the �rst speci�cation provides the interblock communication for the meshes
representing blade row 1 from the meshes representing blade row 2, and the
second speci�cation provides the communication for the meshes representing
blade row 2 from the meshes representing blade row 1. It is a common error
to underspecify a BCPRM boundary by only providing a single line per
interface.

Description:

The BCPRM statement is an extension of the BCPRR statement to in-
clude the speci�cation of multiple LBLOCK1 patches. As with BCPRR,
the the BCPRM statement speci�es that a time-space interpolation uti-
lizing data from several neighboring mesh blocks is to be performed to de-
termine the boundary data for the LBLOCK1 patches. See the discussion
of BCPRR for details about specifying the LBLOCK2 table of data, and
restrictions on the use of BCPRM. BCPRM di�ers from BCPRR only in
the following way: an additional table of values allows multiple LBLOCK1
patches to be speci�ed. One advantage of BCPRM is clearly visible in the
above example: only two boundary speci�cations are required to patch the
two blade rows together, compared to seven speci�cations using BCPRR.
Another, less obvious advantage is that BCPRM executes much faster than
BCPRR in a parallel computing environment. Any BCPRM speci�cation
can be equally represented as a series of BCPRR speci�cations. The addi-

104 BCPRM - Boundary Data File Speci�cations

tional table of data associated with the LBLOCK1 patches in a BCPRM
statement is essentially the same as the table for the LBLOCK2 patches
(see the description of BCPRR for additional details. A comment line is
followed by a line containing the number of patches in the LBLOCK1 row.
Another comment line is followed by the speci�cation of the limits on each
LBLOCK1 patch. One restriction on the use of BCPRM is that all of
the LBLOCK1 patches must share a common LFACE and LDIR. This
requirement can be met by the use of multiple BCPRM or BCPRR spec-
i�cations.

Restrictions/Limitations

The BCPRM boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap), and have common axial and
radial mesh coordinates. The mesh must satisfy the coordinate restrictions
listed in the table above. The LBLOCK1 table of patches must share a
common face and direction as noted above. The BCPRM procedure is only
applicable to 3-D mesh systems.

Common Errors

� Failure to provide 2 BCPRM statements for each interface

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1B, M2LIM2B,
N2LIM1B, N2LIM2B do not correctly de�ne the interface extents
on blocks LBLOCK1 and LBLOCK2B)

� Attempt to use BCPRM on a 2-D mesh block.

� Attempt to use BCPRM at an interface between two Cartesian solu-
tion meshes.

� Meshes do not satisfy coordinate restrictions listed above.

� Meshes have dissimilar axial and radial coordinates at the interface.

Boundary Data File Speci�cations - BCPRM 105

� Neighboring blade row 1 segments not listed in increasing theta coor-
dinate.

� Application of BCPRM to mesh interfaces which do not share a com-
mon surface, or which have excess overlap.

106 BCPRR - Boundary Data File Speci�cations

BCPRR

Boundary Condition Procedure for Patched Rel-
atively Rotating Mesh Blocks

Mesh Block #1
(81x6x7)

Mesh Block #3
(81x6x7)

Relatively Rotating Mesh Block Interface Between
Grids in Adjacent Blade Rows Requires a BCPRR Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #2
(81x6x7)

Mesh Block #4
(81x6x7)

Mesh Block #5
(81x6x7)

i

k

j

Application

The BCPRR speci�cation is used in application involving neighboring rel-
atively rotating mesh blocks, such as in rotor/stator interaction problems.

Boundary Data File Speci�cations - BCPRR 107

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for theBCPRR boundary condition and a simple outline
of the mesh topography are given below. Note that blocks 1 and 2 require
multiple BCPRR speci�cations due to the location of the O-grid cut line.

The geometry is for multiple blade row

multiple passage capped 3-D O-Grid system.

I-K Plane

K=KLAST

| ____ |---------------

| / \ | _ |

| <____ \ I=ILAST | / > I=ILAST

| k=1 \ \-------------| / /------|

| \ \ I=1 | / / I=1 |

| \ \ | -/ / |

|Block #2 \> | _/ Block #5|

| |______________|

--------------------------- _ |

| ____ | / > I=ILAST

| / \ | / /------|

| <____ \ I=ILAST | / / I=1 |

| k=1 \ \-------------| -/ / |

| \ \ I=1 | _/ Block #4|

| \ \ |______________|

|Block #1 \> | _ |

| | / > I=ILAST

--------------------------- / /------|

K=KLAST| / / I=1 |

| -/ / |

| _/ Block #3|

|______________|

108 BCPRR - Boundary Data File Speci�cations

I-J Plane

--

| | A | | | A | |

| | | | | | | | |

| | | | | | | | |

| |<---BLADE--->| | |<--->| |

| | #1 | | | #2 | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | | | | | | | |

| | V | | | V | |

--

BCPRR 1 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 1 3 K K M M I J 7 7 76 81 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 2 3 K K M M I J 7 7 1 6 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

Boundary Data File Speci�cations - BCPRR 109

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 2 3 K K M M I J 7 7 76 81 1 6 36 46 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

3

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

3 K M 7 36 46 1 6

4 K M 7 36 46 1 6

5 K M 7 36 46 1 6

BCPRR 3 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRR 4 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

BCPRR 5 1 K K M M I J 7 7 36 46 1 6 6 1 1 6

THPER

0.41887903

110 BCPRR - Boundary Data File Speci�cations

NBCPRR - NUMBER OF BLOCKS IN BCPRR SPECIFICATION

4

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 6 1 1 6

1 K M 7 81 76 1 6

2 K M 7 6 1 1 6

2 K M 7 81 76 1 6

Note that a complete BCPRR speci�cation generally requires at least two
BCPRR statement lines in the boundary data �le. In the example above,
the �rst four speci�cation provides the interblock communication for the
meshes representing blade row 1 from the meshes representing blade row 2,
and the �nal three speci�cations provides the communication for the meshes
representing blade row 2 from the meshes representing blade row 1. It is
a common error to underspecify a BCPRR boundary by only providing a
single line per interface.

Description:

The BCPRR statement speci�es that a time-space interpolation utilizing
data from several neighboring mesh blocks is to be performed to determine
the boundary data for block LBLOCK1. This time-space interpolation pro-
vides the computational means of performing time-dependent predictions of
the
ow through multiple blade row turbomachines (see the discussion in
Section 2.2). In order to perform this type of calculation, several conditions
must be satis�ed. For calculations involving blade rows with dissimilar blade
counts, it is necessary to model several blade passages per blade row. The
number of blade passages modeled should be chosen such that the overall cir-
cumferential span of each blade row is identical. This implies that the blade
counts should be reducible to simple integer ratios (1:2, 3:4, etc.) to avoid the
need for modeling an excessive number of blade passages. For example, in the
illustrative graphic above, if we seek a solution for a single stage turboma-
chine involving two blade rows with blade counts of 30 and 45, respectively
(reduced blade ratio of 2:3), then the simulation would require 2 blade pas-
sages for the �rst blade row and 3 passages from the second blade row, such
that the overall circumferential pitch for either blade row is 2�

15
(the number

Boundary Data File Speci�cations - BCPRR 111

15 chosen as the largest common factor in the blade counts 30 and 45). The
second restriction is that the interface separating two adjacent blade rows be
a surface of revolution, and that meshes along this interface have common
axial and radial grid distributions. This restriction simpli�es the time-space
interpolation provided by the BCPRR speci�cation. This boundary con-
dition requires the speci�cation of additional data, as shown in the format
descriptor above. The variable following the label THPER de�nes the total
circumferential span of the neighboring blade row's mesh representation in
radians. For example, using the blade counts given in the previous exam-
ple, the circumferential span represented in each blade row is determined
by 2�

15
, and therefore THPER should be 0.41887903. The variable follow-

ing the next label, NBCPRR, indicates the number of mesh blocks through
which the time-space interpolation is to be performed. In the example above,
if we are applying the BCPRR speci�cation to the �rst blade row, then
NBCPRR should be 3, since there are 3 mesh block surfaces in the neigh-
boring blade row de�ning the circumferential extent of relative motion of the
�rst blade row. The numbers immediately following the labels LBLOCK2B,
LFACE2B, LDIR2B, L2LIMB, M2LIM1B, M2LIM2N, N2LIM1B,
and N2LIM2B represent the values of LBLOCK2, LFACE2, LDIR2,
L2LIM,M2LIM1,M2LIM2, N2LIM1, and N2LIM2 (see the beginning
of this section for an explanation of these variables) for each of the individual
NBCPRR segments used in the construction of the circumferential data ar-
ray. The NBCPRR segments and their respective circumferential direction
indices (eitherM2LIM1B, M2LIM2B or N2LIM1B,N2LIM2B must be
listed in order of increasing theta coordinate. Due to the complex nature
of the circumferential interpolation operator, this boundary condition is re-
stricted to speci�c mesh con�gurations. The following chart describes the
permitted mesh con�gurations for the BCPRR speci�cation:

BCPRR Boundary Speci�cation Mesh Coordinate Restrictions

LFACE1 LFACE2 Circumferential Grids Must be

(Block #1 (Block #2 Coordinate Aligned in this

Face) Face) Direction Coordinate

------- ------- --------------- ---------------

I I or K K or I J

112 BCPRR - Boundary Data File Speci�cations

J J only K I

K I or K K or I J

In the example described above, if block numbers 1 and 2 are the block num-
bers for the �rst blade row, and block numbers 3, 4, and 5 are the block
numbers for the second blade row, then the BCPRR speci�cation for each
of the �rst blade row blocks would set THPER = 0.41887903, NBCPRR
= 2, and LBLOCK2B = 3, 4, 5. In a similar manner, the speci�cation for
each of the blocks in the second blade row would set THPER = 0.41887903,
NBCPRR= 4 (due to the use of the O-type mesh for each airfoil, the extent
of the interface between the two blade rows requires 2 mesh surfaces from
each of the blade row 1 airfoil meshes), and LBLOCK2B = 1, 1, 2, 2. It
should be mentioned that this speci�cation is somewhat unique in that more
than one block is involved in the boundary speci�cation, therefore the vari-
able LBLOCK2 is essentially ignored; however, since the blocks speci�ed
by the LBLOCK2B variable are assumed to be essentially duplicate repre-
sentations of neighboring blade passages, the variables L2LIM, M2LIM1,
M2LIM2, N2LIM1, and N2LIM2 are also ignored. The time-space inter-
polation is constructed to permit the relative rotation of blocks representing
neighboring blade rows and therfore cannot be applied to Cartesian solution
meshes. The simulation is initiated from the relative position of the blocks at
the start of the calculation t=0. The interpolation scheme is area weighted
to maintain a conservative property across the interface between the rela-
tively rotating mesh blocks (see the Final Report for additional details on
the implementation of this boundary procedure).

Restrictions/Limitations

The BCPRR boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap), and have common axial and
radial mesh coordinates. The mesh must satisfy the coordinate restrictions
listed in the table above. The BCPRR procedure is only applicable to 3-D
mesh systems.

Common Errors

Boundary Data File Speci�cations - BCPRR 113

� Failure to provide 2 BCPRR statements for each interface

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1B, M2LIM2B,
N2LIM1B, N2LIM2B do not correctly de�ne the interface extents
on blocks LBLOCK1 and LBLOCK2B)

� Attempt to use BCPRR on a 2-D mesh block.

� Attempt to use BCPRR on a Cartesian solution mesh.

� Meshes do not satisfy coordinate restrictions listed above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Neighboring blade row segments not listed in increasing theta coordi-
nate.

� Application of BCPRR to mesh interfaces which do not share a com-
mon surface, or which have excess overlap.

� BCPRR runs very slow on multiple processors - useBCPRM instead.

114 BDATIN - ADPAC08 Boundary Data File Speci�cations

BDATIN

File Read In Mesh Interface Patching Scheme

Mesh Block #1
(51x3x51)

Mesh Block #2
(51x3x51)

BDATIN/BDATOU Combination Used
to Provide Disk Read/Write of Boundary
Data for Interblock Communication
Between Blocks #1 and #2

Application

The BDATIN speci�cation is used to read in boundary data from an exter-
nal �le. This �le may be either be created by an external program, or by the
ADPAC08 boundary speci�cation BDATOU. The application illustrated
above indicates an application of the BDATIN/BDATOU combination
for a two block nozzle
ow case. The BDATIN/BDATOU combination is

ADPAC08 Boundary Data File Speci�cations - BDATIN 115

applied to the interface between the two mesh blocks and is equivalent to a
PATCH speci�cation, except that the interblock communication is accom-
plished through disk read/write rather than shared memory communication.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the BDATIN boundary condition are given below:

BDATIN 1 2 I I M P J K 51 1 1 3 1 51 1 3 1 51

FILENAME

bc.12.data

BDATIN 2 1 I I P M J K 1 51 1 3 1 51 1 3 1 51

FILENAME

bc.21.data

Note that a complete BDATIN speci�cation requires the speci�cation of a
�lename from which the boundary data is read.

Description

The BDATIN statement is utilized to provide boundary data for a mesh sur-
face through external �le speci�cation. During the application of aBDATIN
speci�cation, an external �le is opened, and phantom cell boundary data
are read in for the appropriate computational cells. The external �le data
may be created by an external program, or through the application of a
BDATOU speci�cation. A coupled set of BDATIN/BDATOU speci�ca-
tions can be e�ectively used to replace a PATCH boundary speci�cation.
In this case, interblock communication would be achieved through external
�le read/write rather than shared memory. If the BDATIN/BDATOU
combination is used to replace an equivalent PATCH condition, it should
be noted that both the BDATIN and BDATOU speci�cations should be
written in the same manner as the PATCH statement. In other words, the
BDATIN data is read in to the LBLOCK1 block on the mesh cells de-
�ned by L1LIM, M1LIM1, M1LIM2, N1LIM1 and N1LIM2, and the

116 BDATIN - ADPAC08 Boundary Data File Speci�cations

BDATOU data is written out from the LBLOCK2 block on the mesh cells
de�ned by L2LIM, M2LIM1, M2LIM2, N2LIM1 and N1LIM2. The
BDATIN/BDATOU routines were developed in conjunction with early
parallelization studies for the ADPAC08 to permit interblock communication
via shared disk �le read/write operations. The routines are now considered
useful for coupling the ADPAC08 code with other codes capable of providing
or using speci�ed boundary data.

A BDATIN speci�cation requires two additional lines in addition to the
normal boundary data �le descriptor, as shown above. The �rst additional
line is simply a label, while the second line indicates the �le name relative
to the current directory from which data will be read in for this particular
boundary condition.

Restrictions/Limitations

The BDATIN/BDATOU coupling scheme is restricted to mesh interfaces
which have a one to one mesh point correspondance. Other restrictions ap-
propriate for the PATCH boundary condition also apply to mesh coupling
using the BDATIN/BDATOU scheme. Data provided in the external �le
for the BDATIN speci�cation must represent cell centered data and must
be normalized consistently with the ADPAC08
ow variable nondimension-
alization procedure.

Common Errors

� Failure to provide �le name for BDATIN boundary data �le speci�-
cation.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� BDATIN/BDATOU coupling scheme desired, but only one of the
BDATIN/BDATOU speci�cations provided.

ADPAC08 Boundary Data File Speci�cations - BDATIN 117

� BDATIN/BDATOU coupling scheme boundary speci�cation for a
periodic boundary is applied to a nonperiodic mesh.

� BDATIN/BDATOU coupling scheme boundary speci�cation applied
to a spatially periodic Cartesian geometry using the cylindrical coordi-
nate solution scheme or vice versa (results in incorrect spatial periodic-
ity relationships) The BDATIN/BDATOU coupling scheme bound-
ary speci�cations for Cartesian geometries must use the Cartesian so-
lution algorithm in ADPAC08 (see input variable FCART).

118 BDATOU - ADPAC08 Boundary Data File Speci�cations

BDATOU

File Write Out Mesh Interface Patching Scheme

Mesh Block #1
(51x3x51)

Mesh Block #2
(51x3x51)

BDATIN/BDATOU Combination Used
to Provide Disk Read/Write of Boundary
Data for Interblock Communication
Between Blocks #1 and #2

Application

The BDATOU speci�cation is used to write out boundary data to an ex-
ternal �le. This �le may either be utilized by an external program, or by
the ADPAC08 boundary speci�cation BDATIN. The application illustrated
above indicates an application of the BDATIN/BDATOU combination for
a two block nozzle
ow case. The BDATIN/BDATOU combination is ap-

ADPAC08 Boundary Data File Speci�cations - BDATOU 119

plied to the interface between the two mesh blocks and is equivalent to a
PATCH speci�cation, except that the interblock communication is accom-
plished through disk read/write rather than shared memory communication.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the BDATOU boundary condition are given below:

BDATOU 1 2 I I M P J K 51 1 1 3 1 51 1 3 1 51

FILENAME

bc.12.data

BDATOU 2 1 I I P M J K 1 51 1 3 1 51 1 3 1 51

FILENAME

bc.21.data

Note that a complete BDATOU speci�cation requires the speci�cation of a
�lename from which the boundary data is read.

Description

The BDATOU statement is utilized to export boundary data for a mesh
surface through external �le speci�cation. During the application of a BDA-
TOU speci�cation, an external �le is opened, and near boundary cell-centered
data are written in for the appropriate computational cells. The external �le
data may then be utilized by an external program, or through the application
of a BDATIN speci�cation. A coupled set of BDATIN/BDATOU speci�-
cations can be e�ectively used to replace a PATCH boundary speci�cation.
In this case, interblock communication would be achieved through external
�le read/write rather than shared memory. If the BDATIN/BDATOU
combination is used to replace an equivalent PATCH condition, it should
be noted that both the BDATIN and BDATOU speci�cations should be
written in the same manner as the PATCH statement. In other words, the
BDATIN data is read in to the LBLOCK1 block on the mesh cells de-
�ned by L1LIM, M1LIM1, M1LIM2, N1LIM1 and N1LIM2, and the

120 BDATOU - ADPAC08 Boundary Data File Speci�cations

BDATOU data is written out to the LBLOCK2 block on the mesh cells
de�ned by L2LIM, M2LIM1, M2LIM2, N2LIM1 and N1LIM2. The
BDATIN/BDATOU routines were developed in conjunction with early
parallelization studies for the ADPAC08 to permit interblock communication
via shared disk �le read/write operations. The routines are now considered
useful for coupling the ADPAC08 code with other codes capable of providing
or using speci�ed boundary data.

A BDATOU speci�cation requires two additional lines in addition to the
normal boundary data �le descriptor, as shown above. The �rst additional
line is simply a label, while the second line indicates the �le name relative
to the current directory to which data will be written out for this particular
boundary condition.

Restrictions/Limitations

The BDATIN/BDATOU coupling scheme is restricted to mesh interfaces
which have a one to one mesh point correspondance. Other restrictions ap-
propriate for the PATCH boundary condition also apply to mesh coupling
using the BDATIN/BDATOU scheme. Data provided in the external �le
for the BDATOU speci�cation represents near-boundary cell centered data
and is normalized consistently with the ADPAC08
ow variable nondimen-
sionalization procedure.

Common Errors

� Failure to provide �le name for BDATOU boundary data �le speci�-
cation.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� BDATIN/BDATOU coupling scheme desired, but only one of the
BDATIN/BDATOU speci�cations provided.

ADPAC08 Boundary Data File Speci�cations - BDATOU 121

� BDATIN/BDATOU coupling scheme boundary speci�cation for a
periodic boundary is applied to a nonperiodic mesh.

� BDATIN/BDATOU coupling scheme boundary speci�cation applied
to a spatially periodic Cartesian geometry using the cylindrical coordi-
nate solution scheme or vice versa (results in incorrect spatial periodic-
ity relationships) The BDATIN/BDATOU coupling scheme bound-
ary speci�cations for Cartesian geometries must use the Cartesian so-
lution algorithm in ADPAC08 (see input variable FCART).

122 ENDDATA - ADPAC08 Boundary Data File Speci�cations

ENDDATA

Boundary Data File Read Terminator

Application

The ENDDATA statement causes the ADPAC08 boundary data �le read
utility to discontinue reading lines in the boundary data �le and proceeds
with normal code processing. Any lines following an ENDDATA statement
in a boundary data �le are ignored.

Boundary Data File Format

The boundary data �le speci�cations for an ENDDATA statement is given
below:

ENDDATA

Note that the ENDDATA statement does not require the accompanying
values of LBLOCK1, LBLOCK2, LFACE1, etc. as do all other boundary
data �le keywords.

Description

The ENDDATA statement is utilized to provide a terminator for the bound-
ary data �le read sequence in the ADPAC08 code. Under normal operating
conditions, the boundary data �le is read in one line at a time and parsed to
determine if a boundary data �le keyword is present and uncommented on
each line. When the end of the �le is reached, the boundary data �le read
sequence stops, and normal processing continues as usual. In some cases, it
may be desirable to terminate the boundary data �le read sequence before

ADPAC08 Boundary Data File Speci�cations - ENDDATA 123

the end of the �le, and the ENDDATA statement is provided for this pur-
pose. Whenever an ENDDATA statement is reached, the boundary data
�le read sequence is terminated, and all remaining lines in the boundary data
�le are ignored. The ENDDATA keyword is useful for debugging bound-
ary condition problems, as whole portions of the boundary data �le can be
e�ectively eliminated by simply preceeding the section with an ENDDATA
statement.

Restrictions/Limitations

The ENDDATA keyword has no restrictions.

Common Errors

� Desired boundary conditions speci�cations following an ENDDATA
statement are ignored.

� ADPAC08 aborts because an insu�cient number of boundary condi-
tions were provided for the external boundaries of each mesh block
(external boundaries of some mesh blocks do not have a boundary con-
dition).

124 ENDTTA - ADPAC08 Boundary Data File Speci�cations

ENDTTA

Endwall Treatment Time-Average Mesh Block
Interface Patching Scheme

CCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC
CCCCCCCCCCCCCCC

CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC
CCCCCCCCCCCCCC

CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC
CCCCCCC

CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC
CCCCCCCCCCCCCCCCCCCC

CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC
CCCCCC

Geometry
Fan
Rotor

Casing
Treatment

Computational
Model

Block #1
(99x33x33)

Block #2
(17x17x33)

Single Blade Passage
Representation

Discrete Endwall Treatment
Representation (Only One
Treatment Passage Required)

ENDTTA Boundary Specification
Used to Couple Blade Passage
Flowfield to Discrete Treatment/
Endwall Flow

Endwall Regions Between
Discrete Treatments are
Accounted for in ENDTTA

x

r

i

j

k

Application

The ENDTTA boundary speci�cation was developed speci�cally to permit
numerical prediction of turbomachinery airfoil blade row
ows employing

ADPAC08 Boundary Data File Speci�cations - ENDTTA 125

endwall treatments such as slots, grooves, or embedded bladed passages in a
time-averaged fashion. The example graphic above illustrates a 3-D blocked
mesh system for a turbofan engine fan rotor employing an axial slot casing
treatment. The ENDTTA boundary speci�cation employs a time-averaging
operator (circumferential average of
ow variables) between adjacent rotating
and nonrotating mesh blocks to simulate the e�ects of the blade row/endwall
treatment interaction. As such, it is possible to perform steady state (repre-
sentative of a time average) numerical analysis of turbomachinery blade pas-
sages and endwall treatments which have arbitrary blade passage/treatment
passage count ratios.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the ENDTTA boundary condition are given below:

ENDTTA 1 2 J J M P L L 49 1 49 81 1 33 1 33 1 17

NTREAT RPM TWALL

113 0.0 0.0

Note that a complete ENDTTA speci�cation generally requires a compan-
ionMBCAVG speci�cation to complete the blade passage mesh/treatment
passage mesh interface speci�cation. In the example above, the �rst speci�-
cation provides the interblock communication for block 1 (the blade passage
mesh) to block 2 (the treatment passage mesh) which ultimately accounts for
the in
uence of the true endwall in the boundary speci�cation. The second
speci�cation (MBCAVG) is applied to the treatment passage mesh bound-
ary to simulate the time-average (circumferential average) of the neighboring
blade passage mesh. It is a common error to underspecify an ENDTTA
boundary by only providing a single line per interface.

Description

The ENDTTA boundary statement provides a means for block to block
communication for the prediction of the time-averaged
ow for turbomachin-

126 ENDTTA - ADPAC08 Boundary Data File Speci�cations

ery blade rows employing endwall treatments such as discrete slots, grooves,
or embedded bladed passages. This boundary condition was developed un-
der Task 6 of NASA Contract NAS3-25270 and theoretical details of the
procedure are provided in the Final Report for Task 7 of NASA Contract
NAS3-25270 [17]. The boundary condition is restricted to j=constant mesh
surfaces only and must possess aligned coordinates in the i direction, but
have misaligned mesh points and extents in the circumferential (k) direction.
An example of an appropriate application of the ENDTTA speci�cation is
given in the illustrative graphic. The ENDTTA boundary speci�cation is
valid for 3-D cylindrical solution mesh blocks only.

Restrictions/Limitations

The ENDTTA boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap). The ENDTTA procedure
permits only that the k coordinates between adjacent mesh surfaces are mis-
aligned. The ENDTTA procedure is only valid if applied to j=constant
mesh surfaces. ENDTTA will not run across multiple processors in a par-
allel computing environment.

Common Errors

� Failure to provide a coupled pair of ENDTTA andMBCAVG state-
ments for each interface.

� Failure to properly specify the values for RPM, TWALL and/or
NTREAT

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Attempt to use ENDTTA for an i or k constant boundary.

� Attempt to use ENDTTA for a Cartesian solution mesh.

ADPAC08 Boundary Data File Speci�cations - ENDTTA 127

� Attempt to use ENDTTA for a boundary which has 2 misaligned
coordinates.

� Attempt to use ENDTTA with multiple processors.

128 EXT2DG - Boundary Data File Speci�cations

EXT2DG

Generic 2-D Out
ow Boundary Condition

2−D Mesh Block #1
(28x23x1)

Duct Exit with Uniform
Static Pressure Requires an
EXT2DG Specification

i

j

Flow

2−D Mesh Block #2
(28x9x1)

Flow

Application

The EXT2DG speci�cation is used to impose a generic subsonic out
ow
boundary condition with a uniform exit static pressure for 2-D mesh blocks.
The example graphic above illustrates a 2-D 2-block mesh system mixing
two adjacent streams of varying properties. In this case, the EXT2DG
boundary speci�cation is used to set the out
ow boundary
ow properties
by specifying a uniform exit static pressure. This boundary condition has

Boundary Data File Speci�cations - EXT2DG 129

been utilized extensively as an exit
ow speci�er for 2-D duct
ows.

Boundary Data File Format

The boundary data �le speci�cations for the exit
ow mesh surfaces indicated
in the illustrative graphic for the EXT2DG boundary condition are given
below:

EXT2DG 1 1 I I M M J K 28 28 1 23 1 2 1 23 1 2

PEXIT

0.625

or the alternate speci�cation:

EXT2DG 1 1 I I M M J K 28 28 1 23 1 2 1 23 1 2

PEXIT

0.625

Note that a complete EXT2DG speci�cation requires two additional lines
following the EXT2DG boundary data �le speci�cation line. Failure to
properly specify the data in these additional lines is a common EXT2DG
speci�cation error.

Description

The EXT2DG statement speci�es that a generic, subsonic, uniform static
pressure exit
ow boundary condition is to be applied to the mesh surface
speci�ed by LFACE1 on the 2-D mesh block speci�ed by LBLOCK1. The
EXT2DG boundary condition should be applied for those cases where any
other \specialized" exit boundary condition (such as EXT2DT, EXT2DP,
etc.) does not apply. The EXT2DG boundary condition is also likely to
be somewhat more e�cient computationally than the other exit boundary
condition procedures, at the expense of some physical simpli�cation. The
EXT2DG procedure utilizes a Reimann invariant formulation to compute
exit velocities based on a speci�ed constant exit static pressure. Included in

130 EXT2DG - Boundary Data File Speci�cations

the EXT2DG procedure is a special correction scheme which forces the
ow
to pass out of the
ow domain at the boundary. In other words, if the com-
puted velocities result in a local in
ow at the EXT2DG boundary, no matter
how small the magnitude of the in
ow, the velocities are reset to zero at that
point. This boundary condition requires the speci�cation of additional data,
as shown in the boundary data format descriptor above. The �rst additional
line following the EXT2DG speci�cation is assumed to be a label and may
contain any information; however, for consistency it is recommended that
the label PEXIT be used. The next line contains the value imposed for
the variables PEXIT which represents the downstream exit static pressure
ratio used in the EXT2DG characteristic solution sequence. The value of
the PEXIT variable is the desired normalized downstream static pressure
computed as:

PEXIT =
Pstatic;desired

Pref

where the variable Pref is speci�ed by the input variable PREF. It should
be mentioned that for most geometries, the value of PEXIT, in combination
with any inlet
ow boundary conditions, will normally govern the resulting
solution mass
ow rate (exceptions to this rule will occur when the inlet
mass
ow rate boundary condition procedure INLETM is applied). Values
of PEXIT <0.0 are not permitted. As the value of PEXIT is reduced, the

ow through the boundary will ultimately choke, and further reductions of
PEXIT will no longer increase the mass
ow through the boundary. Nat-
urally, poor convergence or solution divergence can occur if PEXIT is too
high or too low when compared to the rest of the
ow domain. In such cases
where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary
values.

An alternate speci�cation is provided for the EXT2DG boundary spec-
i�cation as shown in the sample application above. In this case, three values
are included following the original boundary speci�cation line. The alternate
speci�cation is provided as a means of achieving a desired mass
ow rate
through the bounding surface using the EXT2DG algorithm. The desired
mass
ow rate is achieved iteratively by incrementally adjusting the exit
static pressure speci�cation until the desired
ow rate is achieved. There-

Boundary Data File Speci�cations - EXT2DG 131

fore, in this speci�cation, the variable PEXIT described in detail above is
the initial exit static pressure used in the iterative process, EMDOT rep-
resents the desired mass
ow rate through the bounding surface in pounds
mass, and PRELAX is a relaxation factor to stabilize the iterative pro-
cess (values may range from 0.0 to 1.0, though poor convergence is likely
for values larger than 0.1). This procedure is not foolproof, and su�ers from
the fact that when a job is restarted, if an updated exit pressure is not in-
serted in the boundary data �le, then the pressure-mass
ow iterative process
will essentially start over. The ADPAC08 code will automatically determine
when to employ the iterative process by identifying the additional boundary
speci�cation variables.

Restrictions/Limitations

The EXT2DG boundary speci�cation is restricted to 2-D mesh surfaces
(3-D mesh surfaces should use the EXITG boundary speci�cation).

Common Errors

� Application of EXT2DG to a 3-D mesh system.

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of thealternate (mass
ow) iterative scheme.

� Reductions in the value of PEXIT do not increase the mass
ow rate
because of
ow choking.

� Value of PEXIT is too high (
ow cannot get started).

132 EXITG - ADPAC08 Boundary Data File Speci�cations

EXITG

Generic Out
ow Boundary Condition

Mesh Block #1
(49x33x33)

Duct Exit with Uniform
Exit Static Pressure Requires
an EXITG Specification

i

k

j

Flow

Application

The EXITG speci�cation is used to impose a generic subsonic out
ow
boundary condition with a uniform exit static pressure. The example graphic
above depicts a simple duct
ow using a Cartesian-based H-grid, where the
exit boundary plane is controlled by an EXITG speci�cation. This bound-
ary condition has been utilized extensively as an exit
ow speci�er for duct

ows.

Boundary Data File Format

ADPAC08 Boundary Data File Speci�cations - EXITG 133

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the EXITG boundary condition is given below:

EXITG 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

PEXIT

0.625

or the alternate speci�cation:

EXITG 1 1 I I M M J K 49 49 1 33 1 33 1 33 1 33

PEXIT EMDOT PRELAX

0.625 40.0 0.001

Note that a complete EXITG speci�cation requires two additional lines fol-
lowing the EXITG boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common EXITG speci�cation
error.

Description

The EXITG statement speci�es that a generic, subsonic, uniform static
pressure exit
ow boundary condition is to be applied to the mesh surface
speci�ed by LFACE1 on the block speci�ed by LBLOCK1. The EXITG
boundary condition should be applied for those cases where any other \spe-
cialized" exit boundary condition (such as EXITT, EXITP, etc.) does not
apply. The EXITG boundary condition is also likely to be somewhat more
e�cient computationally than the other exit boundary condition procedures,
at the expense of some physical simpli�cation. EXITG may be used on
any mesh face (I, J, or K constant) for either cylindrical or Cartesian-based
solution schemes (see the input variable FCART). The EXITG procedure
utilizes a Reimann invariant formulation to compute exit velocities based
on a speci�ed constant exit static pressure. Included in the EXITG pro-
cedure is a special correction scheme which forces the
ow to pass out of
the
ow domain at the boundary. In other words, if the computed velocities
result in a local in
ow at the EXITG boundary, no matter how small the

134 EXITG - ADPAC08 Boundary Data File Speci�cations

magnitude of the in
ow, the velocities are reset to zero at that point. This
boundary condition requires the speci�cation of additional data, as shown in
the Boundary Data Format descriptor above. The �rst additional line fol-
lowing the EXITG speci�cation is assumed to be a label and may contain
any information; however, for consistency it is recommended that the label
PEXIT be used. The next line contains the value imposed for the variables
PEXIT which represents the downstream exit static pressure ratio used in
the EXITG characteristic solution sequence. The value of the PEXIT vari-
able is the desired normalized downstream static pressure computed as:

PEXIT =
Pstatic;desired

Pref

where the variable Pref is speci�ed by the input variable PREF. It should
be mentioned that for most geometries, the value of PEXIT, in combination
with any inlet
ow boundary conditions, will normally govern the resulting
solution mass
ow rate (exceptions to this rule will occur when the inlet
mass
ow rate boundary condition procedure INLETM is applied). Values
of PEXIT <0.0 are not permitted. As the value of EXITP is reduced, the

ow through the boundary will ultimately choke, and further reductions of
EXITP will no longer increase the mass
ow through the boundary. Nat-
urally, poor convergence or solution divergence can occur if PEXIT is too
high or too low when compared to the rest of the
ow domain. In such cases
where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary
values.

An alternate speci�cation is provided for the EXITG boundary speci�-
cation as shown in the sample application above. In this case, three values
are included following the original boundary speci�cation line. The alternate
speci�cation is provided as a means of achieving a desired mass
ow rate
through the bounding surface using the EXITG algorithm. The desired
mass
ow rate is achieved iteratively by incrementally adjusting the exit
static pressure speci�cation until the desired
ow rate is achieved. There-
fore, in this speci�cation, the variable PEXIT described in detail above is
the initial exit static pressure used in the iterative process, EMDOT rep-
resents the desired mass
ow rate through the bounding surface in pounds
mass, and PRELAX is a relaxation factor to stabilize the iterative pro-

ADPAC08 Boundary Data File Speci�cations - EXITG 135

cess (values may range from 0.0 to 1.0, though poor convergence is likely
for values larger than 0.1). This procedure is not foolproof, and su�ers from
the fact that when a job is restarted, if an updated exit pressure is not in-
serted in the boundary data �le, then the pressure-mass
ow iterative process
will essentially start over. The ADPAC08 code will automatically determine
when to employ the iterative process by identifying the additional boundary
speci�cation variables.

Restrictions/Limitations

The EXITG boundary speci�cation is not restricted to 3-D mesh surfaces
(although for consistency 2-D mesh surfaces should use theEXT2DG bound-
ary speci�cation).

Common Errors

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass
ow) boundary scheme.

� Reductions in the value of PEXIT do not increase the mass
ow rate
because of
ow choking.

� Value of PEXIT is too high (
ow cannot get started).

136 EXT2DP - ADPAC08 Boundary Data File Speci�cations

EXT2DP

2-D Patched Turbomachinery Exit Boundary
Condition

Patched Exit Static Pressure and Radial
Equilibrium for 2−D Turbomachinery Exit Flow
Requires an EXT2DP Specification
(illustrated in Boundary Data File Format
statements below)

Static pressure specified at either
lower or upper "j" boundary
Radial equilibrium equation integrated to
complete exit static pressure specification

Radius

Static
Pressure

Circumferential
Flow Angle

Radius

2−D Mesh Block #3
(49x9x1)

2−D Mesh Block #2
(65x9x1)

2−D Mesh Block #1
(65x9x1)

2−D Mesh Block #4
(49x9x1)

Flow

r

x i

j

Application

The EXT2DP speci�cation is used to impose a turbomachinery-based exit
boundary condition based on radial equilibrium for 2-D mesh systems em-
ploying multiple blocks radially across the exit plane. The example graphic
above illustrates a four block mesh system used to predict the axisymmtric

ADPAC08 Boundary Data File Speci�cations - EXT2DP 137

ow through a high bypass ratio turbofan engine geometry. The solution uti-
lizes a speci�ed freestream static pressure at the outer boundary of block 4,
and an EXT2DT speci�cation to integrate the radial equilibrium equation
equation inward radially along the out
ow boundary. In order to continue
the radial equilibrium integration process across the block boundary between
blocks 3 and 4, an EXT2DP speci�cation is used to patch the two blocks.
This boundary condition has been utilized extensively in conjunction with
the EXT2DT speci�cation as an exit
ow speci�er for both ducted and
unducted turbomachinery
ows.

Boundary Data File Format

The boundary data �le speci�cation for the 2-D mesh surface indicated in
the illustrative graphic for the EXT2DP boundary condition is given below:

EXT2DP 4 3 I I M M L H 49 49 1 9 1 2 9 9 1 2

Note that theM2LIM1, M2LIM2 variables in the EXT2DP speci�cation
de�ne a single j mesh line in mesh block LBLOCK2. Failure to properly
regard this requirement is a common EXT2DP speci�cation error. It should
also be mentioned that EXT2DP also requires proper speci�cation of the
LSPEC1 variable for proper execution.

Description

The EXT2DP keyword speci�es that a turbomachinery-based radial equi-
librium patched exit
ow boundary condition is to be applied to the mesh
surface speci�ed by LFACE1 on the 2-D block speci�ed by LBLOCK1.
The EXT2DP boundary condition was speci�cally designed as an exit
ow
boundary procedure for axial and mixed
ow turbomachinery geometries
employing multiple, stacked 2-D mesh blocks (radially) at an exit boundary
plane. The EXT2DP boundary condition procedure utilizes a combination
static pressure speci�cation and integration of the radial equilibrium equa-
tion to de�ne the static pressure �eld at all points on the boundary surface.
The initial static pressure speci�cation used to initiate the radial equilibrium

138 EXT2DP - ADPAC08 Boundary Data File Speci�cations

integration process is obtained from a neighboring mesh block. As a result
of the complexity of this procedure, several mesh restrictions were imposed
to simplify the application of this approach. The primary assumption is that
the integration of the radial equilibrium equation may be performed along
the j coordinate direction of the mesh. Hence, the j coordinate should be the
radial-like direction. A single speci�cation of static pressure is required at ei-
ther the maximum or minimum extreme of the j coordinate of the boundary
surface in order to initiate the integration process. The direction of inte-
gration, and location of application of the speci�ed exit static pressure are
determined by the LSPEC1 variable in the calling sequence. If LSPEC1
= L, for LOW, then PEXIT is applied to the lower (smallest value) of the j
index, and the radial equilibrium equation is integrated outward (increasing
j direction). If LSPEC1 = H, for HIGH, then PEXIT is applied to the
upper (largest value) of the j index, and the radial equilibrium equation is
integrated inward (decreasing j direction). The direction of integration im-
plied by LSPEC1 must be consistent with the location of the neighboring
mesh block (LBLOCK2) from which the initial pressure data is derived.
The j coordinate location from which the pressure is taken in mesh block
LBLOCK2 is determined by the M2LIM1, M2LIM1 variable, and the
speci�cation of the LSPEC2 control parameter. If theM2LIM1,M2LIM2
combination is taken from the higher j index, then LSPEC2 should be H.
If the M2LIM1,M2LIM2 combination is taken from the lower j index,
then LSPEC2 should be L. Under most circumstances, the static pressure
is taken from either the uppermost or lowermost j coordinate, in which case
LSPEC2 should be eitherH or L, respectively. The remaining
ow variables
on the EXT2DP boundary are updated by a Reimann invariant formulation
based on the resulting local static pressure �eld. Included in the EXT2DP
procedure is a special correction scheme which forces the
ow to pass out of
the
ow domain. In other words, if the computed velocities result in a local
in
ow at the EXT2DP boundary, no matter how small the magnitude of
the in
ow, the velocities are reset to zero at that point.

Restrictions/Limitations

The EXT2DP boundary condition assumes that the mesh is oriented in such

ADPAC08 Boundary Data File Speci�cations - EXT2DP 139

a fashion that the radial coordinate is de�ned as r =
p
y2 + z2. For axial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the radial-like direction
of the mesh be de�ned by the j coordinate, and is therefore not valid on a
j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation.
Examples of this type of mesh system can be found in the chapter de�ning
standard con�gurations. The EXT2DP boundary speci�cation is restricted
to 2-D mesh surfaces (3-D mesh surfaces should use the EXITP boundary
speci�cation). By default, it is important that this type of boundary condi-
tion be carefully speci�ed and the �nal solution carefully examined to ensure
that the desired mesh patching be adequately satis�ed. It is a common error
to patch to the wrong grid, or the wrong end of the correct grid, and still
obtain a converged solution.

Common Errors

� Application of EXT2DP to a 3-D mesh system.

� Failure to properly specify the LSPEC1, LSPEC2 variables.

� M2LIM1 and M2LIM2 di�er.

� Radial-like direction of the mesh is not the j coordinate.

� Failure to properly specify the LSPEC1 variable on the boundary data
�le speci�cation line.

� EXT2DP speci�cation patched to the wrong grid.

� EXT2DP speci�cation patched to the wrong end of the correct grid.

� EXT2DP boundary condition used but no EXT2DT or EXITT
boundary condition speci�ed.

� EXT2DP boundary condition called before EXT2DT (not required,
but could cause problems).

140 EXITP - ADPAC08 Boundary Data File Speci�cations

EXITP

Patched Turbomachinery Exit Boundary Con-
dition

Mesh Block #1
(73x13x25)

Patched Exit Static Pressure and Radial
Equilibrium for Turbomachinery Exit Flow
Requires an EXITP Specification
(illustrated in Boundary Data File Format
statements below)

ik

j

xy

z

RadiusRadius

Circumferential
Flow Angle

Static
Pressure

Static pressure obtained from a neighboring
block at either lower or upper "j" boundary
Radial equilibrium equation integrated
to complete exit static pressure specification

Flow

Mesh Block #2
(73x21x25)

Application

The EXITP speci�cation is used to impose a turbomachinery-based exit
boundary condition based on radial equilibrium for mesh systems employing
multiple blocks radially across the exit plane. The example graphic illus-
trates a two block 3-D mesh system used to predict the
ow through a blade
passage of a turbomachinery fan rotor with a part span shroud. The blocks
are divided radially by the part span shroud, and as a result, the exit bound-
ary plane consists of two mesh boundary segments. In order to employ a
turbomachinery-based radial equilibrium exit
ow boundary condition for
this case, the EXITT speci�cation is applied to the inner mesh block (#1)

ADPAC08 Boundary Data File Speci�cations - EXITP 141

and the EXITP boundary condition is used for the outer block (#2) to com-
plete the inner to outer integration of the radial equilibrium equation across
the mesh block interface. This boundary condition has been utilized exten-
sively in conjunction with the EXITT speci�cation as an exit
ow speci�er
for both ducted and unducted turbomachinery
ows.

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the EXITP boundary condition is given below:

EXITP 2 2 I I M M L L 73 73 1 21 1 25 13 13 1 25

Note that the M2LIM1, M2LIM2 variables in the EXITP speci�cation
de�ne a single j mesh line in mesh block LBLOCK2. Failure to properly
regard this requirement is a common EXITP speci�cation error. It should
also be mentioned that EXITP also requires proper speci�cation of the
LSPEC1 variable for proper execution.

Description

The EXITP keyword speci�es that a turbomachinery-based radial equilib-
rium patched exit
ow boundary condition is to be applied to the mesh
surface speci�ed by LFACE1 on the block speci�ed by LBLOCK1. The
EXITP boundary condition was speci�cally designed as an exit
ow bound-
ary procedure for axial and mixed
ow turbomachinery geometries employ-
ing multiple, stacked mesh blocks (radially) at an exit boundary plane. The
EXITP boundary condition procedure utilizes a combination static pres-
sure speci�cation and integration of the radial equilibrium equation to de�ne
the static pressure �eld at all points on the boundary surface. The initial
static pressure speci�cation used to initiate the radial equilibrium integra-
tion process is obtained from a neighboring mesh block. As a result of the
complexity of this procedure, several mesh restrictions were imposed to sim-
plify the application of this approach. The primary assumption is that the
integration of the radial equilibrium equation may be performed along the

142 EXITP - ADPAC08 Boundary Data File Speci�cations

j coordinate direction of the mesh. Hence, the j coordinate should be the
radial-like direction. A single speci�cation of static pressure is required at ei-
ther the maximum or minimum extreme of the j coordinate of the boundary
surface in order to initiate the integration process. The direction of inte-
gration, and location of application of the speci�ed exit static pressure are
determined by the LSPEC1 variable in the calling sequence. If LSPEC1
= L, for LOW, then PEXIT is applied to the lower (smallest value) of the j
index, and the radial equilibrium equation is integrated outward (increasing
j direction). If LSPEC1 = H, for HIGH, then PEXIT is applied to the
upper (largest value) of the j index, and the radial equilibrium equation is
integrated inward (decreasing j direction). The direction of integration im-
plied by LSPEC1 must be consistent with the location of the neighboring
mesh block (LBLOCK2) from which the initial pressure data is derived.
The j coordinate location from which the pressure is taken in mesh block
LBLOCK2 is determined by the M2LIM1, M2LIM1 variable, and the
speci�cation of the LSPEC2 control parameter. If theM2LIM1,M2LIM2
combination is taken from the higher j index, then LSPEC2 should be H.
If the M2LIM1,M2LIM2 combination is taken from the lower j index,
then LSPEC2 should be L. Under most circumstances, the static pressure
is taken from either the uppermost or lowermost j coordinate, in which case
LSPEC2 should be eitherH or L, respectively. The remaining
ow variables
on the EXITP boundary are updated by a Reimann invariant formulation
based on the resulting local static pressure �eld. Included in the EXITP
procedure is a special correction scheme which forces the
ow to pass out of
the
ow domain. In other words, if the computed velocities result in a local
in
ow at the EXITP boundary, no matter how small the magnitude of the
in
ow, the velocities are reset to zero at that point.

Restrictions/Limitations

The EXITP boundary condition assumes that the mesh is oriented in such
a fashion that the radial coordinate is de�ned as r =

p
y2 + z2. For axial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the radial-like direction
of the mesh be de�ned by the j coordinate, and is therefore not valid on a

ADPAC08 Boundary Data File Speci�cations - EXITP 143

j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation.
Examples of this type of mesh system can be found in the chapter de�ning
standard con�gurations. The EXITP boundary speci�cation is restricted to
3-D mesh surfaces (2-D mesh surfaces should use the EXT2DP boundary
speci�cation).

Common Errors

� Application of EXITP to a 2-D mesh system.

� Failure to properly specify the LSPEC2 variable.

� M2LIM1 and M2LIM2 di�er.

� Radial-like direction of the mesh is not the j coordinate.

� Failure to properly specify the LSPEC1 variable on the boundary data
�le speci�cation line.

144 EXT2DT - ADPAC08 Boundary Data File Speci�cations

EXT2DT

2-D Turbomachinery Exit Boundary Condition

2−D Mesh Block #1
(49x17x1)

Specified Exit Static Pressure and Radial
Equilibrium for 2−D Turbomachinery Exit Flow
Requires an EXT2DT Specification
(illustrated in Boundary Data File Format
statements below)

i

r j

x

Radius

Circumferential
Flow Angle

Static
Pressure

Static pressure specified at either
lower or upper "j" boundary
Radial equilibrium equation integrated to
complete exit static pressure specification

Flow

Application

The EXT2DT speci�cation is used to impose a turbomachinery-based exit
boundary condition based on radial equilibrium for 2-D mesh blocks. The ex-
ample graphic illustrated above depicts an EXT2DT speci�cation for a 2-D
(axisymmetric)
ow solution for a turbomachinery blade row. This bound-
ary condition has been utilized extensively as an exit
ow speci�er for both
ducted and unducted 2-D turbomachinery
ows.

Boundary Data File Format

ADPAC08 Boundary Data File Speci�cations - EXT2DT 145

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the EXT2DT boundary condition is given below:

EXT2DT 1 1 I I M M L L 49 49 1 17 1 2 1 17 1 2

PEXIT

1.105

or the alternate speci�cation:

EXT2DT 1 1 I I M M L L 49 49 1 17 1 2 1 17 1 2

PEXIT EMDOT PRELAX

1.105 13.7 0.001

Note that a complete EXT2DT speci�cation requires two additional lines
following the EXT2DT boundary data �le speci�cation line. Failure to
properly specify the data in these additional lines is a common EXT2DT
speci�cation error. It should also be mentioned that EXT2DT also requires
proper speci�cation of the LSPEC1 variable for proper execution.

Description

The EXT2DT keyword speci�es that a turbomachinery-based radial equi-
librium exit
ow boundary condition is to be applied to the mesh surface
speci�ed by LFACE1 on the 2-D mesh block speci�ed by LBLOCK1.
The EXT2DT boundary condition was speci�cally designed as an exit
ow
boundary procedure for 2-D axial and mixed
ow turbomachinery geome-
tries. Pure radial
ow turbomachinery exit
ow boundaries may usually be
speci�ed by the EXT2DG boundary condition. Due to the form of the
radial equilibrium equation utilized in the EXT2DG routine, only cylin-
drical coordinate solution meshes are permitted to use this routine. The
EXT2DT boundary condition procedure utilizes a combination static pres-
sure speci�cation and integration of the radial equilibrium equation to de�ne
the static pressure �eld at all points on the boundary surface. As a result of
the complexity of this procedure, several mesh restrictions were imposed to
simplify the application of this approach. The primary assumption is that

146 EXT2DT - ADPAC08 Boundary Data File Speci�cations

the integration of the radial equilibrium equation may be performed along
the j coordinate direction of the mesh. Hence, the j coordinate should be the
radial-like direction. A single speci�cation of static pressure is required at ei-
ther the maximum or minimum extreme of the j coordinate of the boundary
surface in order to initiate the integration process. The direction of inte-
gration, and location of application of the speci�ed exit static pressure are
determined by the LSPEC1 variable in the calling sequence. If LSPEC1
= L, for LOW, then PEXIT is applied to the lower (smallest value) of the j
index, and the radial equilibrium equation is integrated outward (increasing
j direction). If LSPEC1 = H, for HIGH, then PEXIT is applied to the
upper (largest value) of the j index, and the radial equilibrium equation is
integrated inward (decreasing j direction). The remaining
ow variables on
the EXT2DT boundary are updated by a Reimann invariant formulation
based on the resulting local static pressure �eld. Included in the EXT2DT
procedure is a special correction scheme which forces the
ow to pass out of
the
ow domain. In other words, if the computed velocities result in a local
in
ow at the EXT2DT boundary, no matter how small the magnitude of the
in
ow, the velocities are reset to zero at that point. This boundary condition
requires the speci�cation of additional data, as shown in the boundary data
format descriptor above. The �rst additional line following the EXT2DT
speci�cation is assumed to be a label and may contain any information; how-
ever, for consistency it is recommended that the label PEXIT be used. The
line following the PEXIT label contains the value of speci�ed nondimen-
sional exit static pressure used to initiate the radial equilibrium integration
procedure. The value of the PEXIT variable is computed as follows:

PEXIT =
Pexitstatic;desired

Pref

The variable Pref is speci�ed by the input variablePREF. Values of PEXIT
<0.0 are not permitted. Naturally, poor convergence or solution divergence
can occur if the value of PEXIT suggests boundary data which are signi�-
cantly di�erent from the remainder of the
ow�eld. In such cases where this
occurs, it is recommended that the solution be started with more conservative
boundary values, and then restarted using the �nal boundary values.

An alternate speci�cation is provided for the EXDT2DT boundary spec-
i�cation as shown in the sample application above. In this case, three values

ADPAC08 Boundary Data File Speci�cations - EXT2DT 147

are included following the original boundary speci�cation line. The alternate
speci�cation is provided as a means of achieving a desired mass
ow rate
through the bounding surface using the EXT2DT algorithm. The desired
mass
ow rate is achieved iteratively by incrementally adjusting the exit
static pressure speci�cation until the desired
ow rate is achieved. There-
fore, in this speci�cation, the variable PEXIT described in detail above is
the initial exit static pressure used in the iterative process, EMDOT rep-
resents the desired mass
ow rate through the bounding surface in pounds
mass, and PRELAX is a relaxation factor to stabilize the iterative pro-
cess (values may range from 0.0 to 1.0, though poor convergence is likely
for values larger than 0.1). This procedure is not foolproof, and su�ers from
the fact that when a job is restarted, if an updated exit pressure is not in-
serted in the boundary data �le, then the pressure-mass
ow iterative process
will essentially start over. The ADPAC08 code will automatically determine
when to employ the iterative process by identifying the additional boundary
speci�cation variables.

Restrictions/Limitations

The EXT2DT boundary condition assumes that the mesh is oriented in such
a fashion that the radial coordinate is de�ned as r =

p
y2 + z2. For axial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the radial-like direction
of the mesh be de�ned by the j coordinate, and is therefore not valid on a
j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation.
Examples of this type of mesh system can be found in the chapter de�ning
standard con�gurations. The EXT2DT boundary speci�cation is restricted
to 2-D mesh surfaces (3-D mesh surfaces should use the EXITT boundary
speci�cation).

Common Errors

� Application of EXT2DT to a 3-D mesh system.

148 EXT2DT - ADPAC08 Boundary Data File Speci�cations

� Failure to specify the additional data value PEXIT.

� Improper speci�cation of the alternate (mass
ow) iterative scheme.

� Radial-like direction of the mesh is not the j coordinate.

� Cylindrical solution procedure not selected (FCART=1.0)

� Failure to properly specify the LSPEC1 variable on the boundary data
�le speci�cation line.

� Value of PEXIT is too high (
ow cannot get started).

ADPAC08 Boundary Data File Speci�cations - EXITT 149

EXITT

Turbomachinery Exit Boundary Condition

Mesh Block #1
(49x17x17)

Specified Exit Static Pressure and Radial
Equilibrium for Turbomachinery Exit Flow
Requires an EXITT Specification
(illustrated in Boundary Data File Format
statements below)

ik

j

xy

z

RadiusRadius

Circumferential
Flow Angle

Static
Pressure

Static pressure specified at either lower
or upper "j" boundary
Radial equilibrium equation integrated
to complete exit static pressure specification

Flow

Application

The EXITT speci�cation is used to impose a turbomachinery-based exit
boundary condition based on radial equilibrium. The illustrative graphic
above depicts an application of the EXITT out
ow boundary condition for
an H-type mesh for a turbomachinery fan rotor blade passage. The EXITT
speci�cation provides the radial variation of
ow properties at the out
ow
boundary resulting from the application of a simpli�ed form of the radial
equilibrium equation. This boundary condition has been utilized extensively
as an exit
ow speci�er for both ducted and unducted turbomachinery
ows.

Boundary Data File Format

150 EXITT - ADPAC08 Boundary Data File Speci�cations

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the EXITT boundary condition is given below:

EXITT 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT

1.105

or the alternate speci�cation:

EXITT 1 1 I I M M L L 49 49 1 17 1 17 1 17 1 17

PEXIT EMDOT PRELAX

1.105 13.7 0.001

Note that a complete EXITT speci�cation requires two additional lines fol-
lowing the EXITT boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common EXITT speci�ca-
tion error. It should also be mentioned that EXITT also requires proper
speci�cation of the LSPEC1 variable for proper execution.

Description

The EXITT keyword speci�es that a turbomachinery-based radial equi-
librium exit
ow boundary condition is to be applied to the mesh surface
speci�ed by LFACE1 on the block speci�ed by LBLOCK1. The EXITT
boundary condition was speci�cally designed as an exit
ow boundary pro-
cedure for axial and mixed
ow turbomachinery geometries (pure radial
ow
turbomachinery exit
ow boundaries may be usually be speci�ed by the EX-
ITG boundary condition). The EXITT boundary condition procedure uti-
lizes a combination static pressure speci�cation and integration of the radial
equilibrium equation to de�ne the static pressure �eld at all points on the
boundary surface. As a result of the complexity of this procedure, several
mesh restrictions were imposed to simplify the application of this approach.
The primary assumption is that the integration of the radial equilibrium
equation may be performed along the j coordinate direction of the mesh.

ADPAC08 Boundary Data File Speci�cations - EXITT 151

Hence, the j coordinate should be the radial-like direction. A single spec-
i�cation of static pressure is required at either the maximum or minimum
extreme of the j coordinate of the boundary surface in order to initiate the
integration process. The direction of integration and location of application
of the speci�ed exit static pressure are determined by the LSPEC1 variable
in the calling sequence. If LSPEC1 = L, for LOW, then PEXIT is ap-
plied to the lower (smallest value) of the j index, and the radial equilibrium
equation is integrated outward (increasing j direction). If LSPEC1 = H, for
HIGH, then PEXIT is applied to the upper (largest value) of the j index,
and the radial equilibrium equation is integrated inward (decreasing j direc-
tion). The remaining
ow variables on the EXITT boundary are updated by
a Reimann invariant formulation based on the resulting local static pressure
�eld. Included in the EXITT procedure is a special correction scheme which
forces the
ow to pass out of the
ow domain. In other words, if the com-
puted velocities result in a local in
ow at the EXITT boundary, no matter
how small the magnitude of the in
ow, the velocities are reset to zero at that
point. This boundary condition requires the speci�cation of additional data,
as shown in the boundary data format descriptor above. The �rst additional
line following the EXITT speci�cation is assumed to be a label and may
contain any information; however, for consistency it is recommended that
the label PEXIT be used. The line following the PEXIT label contains the
value of speci�ed non-dimensional exit static pressure used to initiate the
radial equilibrium integration procedure. The value of the PEXIT variable
is computed as follows:

PEXIT =
Pexitstatic;desired

Pref

The variable Pref are speci�ed by the input variablePREF. Values ofPEXIT
<0.0 are not permitted. Naturally, poor convergence or solution divergence
can occur if the value of PEXIT suggests boundary data which are signi�-
cantly di�erent from the remainder of the
ow�eld. In such cases where this
occurs, it is recommended that the solution be started with more conservative
boundary values, and then restarted using the �nal boundary values.

An alternate speci�cation is provided for the EXITT boundary speci�-
cation as shown in the sample application above. In this case, three values
are included following the original boundary speci�cation line. The alternate

152 EXITT - ADPAC08 Boundary Data File Speci�cations

speci�cation is provided as a means of achieving a desired mass
ow rate
through the bounding surface using the EXITT algorithm. The desired
mass
ow rate is achieved iteratively by incrementally adjusting the exit
static pressure speci�cation until the desired
ow rate is achieved. There-
fore, in this speci�cation, the variable PEXIT described in detail above is
the initial exit static pressure used in the iterative process, EMDOT rep-
resents the desired mass
ow rate through the bounding surface in pounds
mass, and PRELAX is a relaxation factor to stabilize the iterative pro-
cess (values may range from 0.0 to 1.0, though poor convergence is likely
for values larger than 0.1). This procedure is not foolproof, and su�ers from
the fact that when a job is restarted, if an updated exit pressure is not in-
serted in the boundary data �le, then the pressure-mass
ow iterative process
will essentially start over. The ADPAC08 code will automatically determine
when to employ the iterative process by identifying the additional boundary
speci�cation variables.

Restrictions/Limitations

The EXITT boundary condition assumes that the mesh is oriented in such
a fashion that the radial coordinate is de�ned as r =

p
y2 + z2. For axial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the radial-like direction
of the mesh be de�ned by the j coordinate, and is therefore not valid on a
j =constant mesh plane. This is required in order to properly integrate the
radial equilibrium equation to complete the exit static pressure speci�cation.
Examples of this type of mesh system can be found in the chapter de�ning
standard con�gurations. The EXITT boundary speci�cation is restricted to
3-D mesh surfaces (2-D mesh surfaces should use the EXT2DT boundary
speci�cation).

Common Errors

� Application of EXITT to a 2-D mesh system.

� Failure to specify the additional data value PEXIT.

ADPAC08 Boundary Data File Speci�cations - EXITT 153

� Improper speci�cation of the alternate (mass
ow) iterative scheme.

� Radial-like direction of the mesh is not the j coordinate.

� Mesh does not possess circumferential symmetry (axial, radial mesh
coordinates vary in the circumferential coordinate direction).

� Failure to properly specify the LSPEC1 variable on the boundary data
�le speci�cation line.

� Value of PEXIT is too high (
ow cannot get started).

154 FIXED - ADPAC08 Boundary Data File Speci�cations

FIXED

Fixed Flow Boundary Speci�cation

Primary
Flow

Secondary
Flow

FIXED Boundary Specification
Used to Simulate Secondary
Flow

Application

The FIXED speci�cation is used as a \last resort" boundary speci�cation
which hardwires
ow properties into the numerical solution. The application
illustrated above indicates an application of the FIXED boundary speci�ca-
tion to provide a direct implementation of the
ow properties of an injection
jet into a simple duct
ow. The same jet could have been modeled more
e�ectively using alternate boundary conditions, or through the addition of
an additional grid to simulate the jet
ow passage; however, for the purposes
of demonstration, and to obtain a solution of this type quickly, the FIXED

ADPAC08 Boundary Data File Speci�cations - FIXED 155

speci�cation was used instead.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the FIXED boundary condition are given below:

FIXED 1 1 J J P P I K 1 1 11 21 1 11 11 21 1 11

RO U V W TTOT

0.002 100.0 100.0 0.0 600.0

Note that a complete FIXED speci�cation requires the speci�cation of ad-
ditional data beyond the standard boundary speci�cation line.

Description

The FIXED statement is used to provide a �xed speci�cation of boundary

ow data in the absence of any other appropriate boundary condition. This
routine was provided for those cases where other boundary conditions either
cannot provide the boundary speci�cations desired, or in those cases where
a �xed boundary speci�cation is deemed appropriate. In most cases, the
FIXED speci�cation is undesirable because the boundary condition itself
is perfectly re
ecting, and will therefore inhibit solution convergence. In
addition, the FIXED speci�cation does not permit interaction between the
boundary
ow and the interior
ow, which runs contrary to the normal
uid
dynamics behavior.

A FIXED speci�cation requires two additional lines in addition to the
normal boundary data �le descriptor, as shown above. The �rst additional
line simply contains the labels for the additional
ow variableRO, U, V,W,
and TTOT. The next line contains the actual values for the
ow variable
speci�cations. The variable RO de�nes the
uid density in slugs per cubic
foot. The variables U, V, and W contain the
uid velocity components
in feet per second for the x, y, and z coordinate directions for a Cartsian
solution mesh block, and the x, r, and � coordinate directions for a cylindrical
solution mesh block, respectively. Finally, TTOT represents the
uid total

156 FIXED - ADPAC08 Boundary Data File Speci�cations

temperature in degrees Rankine for the boundary speci�cation. During the
application of a FIXED speci�cation, phantom boundary cell data are set
according to the data provided in the extra lines following the boundary data
speci�cation line as shown above. As a result, the data is not necessarily
applied at the boundary, but the in
uence of the data is felt just outside
the boundary. This phenomenon is consistent with the behavior of a �nite
volume solution algorithm.

Restrictions/Limitations

Data provided in the FIXED speci�cation should represent phantom cell
centered data and must be dimensionalized as described above.

Common Errors

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Failure to provide additional data for FIXED speci�cation.

� FIXED boundary speci�cations for cylindrical solution mesh blocks
must use the cylindrical velocity components.

� FIXED boundary speci�cations for Cartesian solution mesh blocks
must use the Cartesian velocity components.

ADPAC08 Boundary Data File Speci�cations - FRE2D 157

FRE2D

2-D Far Field Flow Boundary Condition

2−D Mesh Block #4
(97x17x1)

Far Field Boundary with Angled
Flow Requires a FRE2D Specification

2−D Mesh Block #3
(97x17x1)

2−D Mesh Block #1
(129x17x1)

2−D Mesh Block #2
(129x17x1)

i

j

x

r

Application

The FRE2D speci�cation is used to impose a far �eld boundary condition
with uniform far �eld
ow properties. The example graphic above illustrates
a four block mesh system used to predict the axisymmetric
ow through a
high bypass ducted fan. The two outer blocks (#2 and #4) require a far�eld
boundary condition at the outer boundary (j=17). The FRE2D boundary
speci�cation is used to satisfy the far�eld
ow requirement. This boundary
condition has been utilized extensively for both ducted and unducted 2-D
fan propulsion systems.

Boundary Data File Format

158 FRE2D - ADPAC08 Boundary Data File Speci�cations

The boundary data �le speci�cation for the mesh interface indicated in the
illustrative graphic for the FRE2D boundary condition is given below:

FRE2D 2 2 J J M M I K 17 17 1 129 1 2 1 129 1 2 Block 2

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 0.0

FRE2D 4 4 J J M M I K 17 17 1 97 1 2 1 97 1 2 Block 4

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 0.0

Note that a complete FRE2D speci�cation requires two additional lines fol-
lowing the FRE2D boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common FRE2D speci�cation
error.

Description

The FRE2D statement speci�es that an external, free
ow boundary con-
dition is to be applied to the mesh surface speci�ed by LFACE1 on the 2-D
block speci�ed by LBLOCK1. The FRE2D boundary condition is primar-
ily used for external
ow problems at a far �eld boundary to simulate the
e�ects of the atmosphere or other large reservoir with known properties. The
FRE2D procedure utilizes a Reimann invariant formulation to compute the
local
ow quantities, and permits both in
ow and out
ow through the bound-
ing surface based on the nature of the local
ow with respect to the known
far �eld conditions. This boundary condition requires the speci�cation of ad-
ditional data, as shown in the boundary data format descriptor above. The
�rst additional line following the FRE2D speci�cation is assumed to be a
label and may contain any information; however, for consistency it is recom-
mended that the labels PTOT, TTOT, EMINF, and ALPHA be used.
The next line contains the values imposed for the variables PTOT, TTOT,
EMINF, and ALPHA, which represent the far �eld nondimensional reser-
voir total pressure and total temperature, along with the Mach number and
Cartesian angle of attack, respectively, used in the FRE2D characteristic
solution sequence. The value of the PTOT variable is the desired normal-

ADPAC08 Boundary Data File Speci�cations - FRE2D 159

ized far �eld total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized far �eld total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. The variable
EMINF represents the far �eld Mach number. The far �eld
ow is always
assumed to progress along the positive x axis, and therefore mesh systems
should be generated with this in mind. Finally, the variable ALPHA repre-
sents the far�eld Cartesian angle of attack, in degrees, relative to the x axis,
with positive angles resulting in far �eld velocity components in the z coordi-
nate direction. For 2-D
ows, this must virtually always be zero. The angle
of attack velocities are always in the x-z plane and the velocity components
in the y coordinate direction are always zero. If there is out
ow along the
FREE boundary, then some small y component velocities may occur as a
result of extrapolation from the near �eld
ow. Naturally, poor convergence
or solution divergence can occur if PTOT, TTOT, EMINF or ALPHA
suggest boundary values which are signi�cantly di�erent from the remainder
of the
ow�eld. In such cases where this occurs, it is recommended that
the solution be started with more conservative boundary values, and then
restarted using the �nal boundary values.

Restrictions/Limitations

The FRE2D boundary speci�cation is restricted to 2-D mesh surfaces (3-D
mesh surfaces should use the FREE boundary speci�cation). The far �eld

ow angle of attack must usually be zero.

Common Errors

160 FRE2D - ADPAC08 Boundary Data File Speci�cations

� Application of FRE2D to a 3-D mesh system.

� Failure to specify the additional data values PTOT, TTOT, EMINF,
or ALPHA.

� ALPHA has a nonzero value.

� Failure to generate the mesh with +x as the downstream
ow direction.

ADPAC08 Boundary Data File Speci�cations - FREE 161

FREE

Far Field Flow Boundary Condition

Mesh Block #4
(49x9x13)

Far Field Boundary with Angled
Flow Requires a FREE Specification

Far Field Flow at
Angle of Attack

Mesh Block #3
(49x9x13)

Mesh Block #1
(65x9x13)

Mesh Block #2
(65x9x13)

z

x y

i

k

j

Application

The FREE speci�cation is used to impose a far �eld boundary condition
with uniform far �eld
ow properties. The example graphic above illustrates
a four block mesh system used to predict the 3-D
ow through a high bypass
ducted fan. The two outer blocks (#2 and #4) require a far�eld boundary
condition at the outer boundary (j=9). The FREE boundary speci�cation is
used to satisfy the far�eld
ow requirement This boundary condition has been
utilized extensively for both ducted and unducted fan propulsion systems
including angle of attack cases.

Boundary Data File Format

162 FREE - ADPAC08 Boundary Data File Speci�cations

The boundary data �le speci�cation for the mesh interfaces indicated in the
illustrative graphic for the FREE boundary condition are given below:

FREE 2 2 J J M M I K 9 9 1 65 1 13 1 65 1 13 Block 2

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 10.0

FREE 4 4 J J M M I K 9 9 1 49 1 13 1 49 1 13 Block 4

PTOT TTOT EMINF ALPHA

1.0 1.0 0.75 10.0

Note that a complete FREE speci�cation requires two additional lines fol-
lowing the FREE boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common FREE speci�cation
error.

Description

The FREE statement speci�es that an external, free
ow boundary condi-
tion is to be applied to the mesh surface speci�ed by LFACE1 on the block
speci�ed by LBLOCK1. The FREE boundary condition is primarily used
for external
ow problems at a far �eld boundary to simulate the e�ects of
the atmosphere or other large reservoir with known properties. The FREE
procedure utilizes a Reimann invariant formulation to compute the local
ow
quantities, and permits both in
ow and out
ow through the bounding sur-
face based on the nature of the local
ow with respect to the known far �eld
conditions. This boundary condition requires the speci�cation of additional
data, as shown in the boundary data format descriptor above. The �rst ad-
ditional line following the FREE speci�cation is assumed to be a label and
may contain any information; however, for consistency it is recommended
that the labels PTOT, TTOT, EMINF, and ALPHA be used. The next
line contains the values imposed for the variables PTOT, TTOT, EMINF,
and ALPHA, which represent the far �eld nondimensional reservoir total
pressure and total temperature, along with the Mach number and Cartesian
angle of attack, respectively, used in the FREE characteristic solution se-
quence. The value of the PTOT variable is the desired normalized far �eld

ADPAC08 Boundary Data File Speci�cations - FREE 163

total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized far �eld total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. The variable
EMINF represents the far �eld Mach number. The far �eld
ow is always
assumed to progress along the positive x axis, and therefore mesh systems
should be generated with this in mind. Finally, the variable ALPHA repre-
sents the far�eld Cartesian angle of attack, in degrees, relative to the x axis,
with positive angles resulting in far �eld velocity components in the z coor-
dinate direction. The angle of attack velocities are always in the x-z plane
and the velocity components in the y coordinate direction are always zero.
If there is out
ow along the FREE boundary, then some small y component
velocities may occur as a result of extrapolation from the near �eld
ow. Nat-
urally, poor convergence or solution divergence can occur if PTOT, TTOT,
EMINF or ALPHA suggest boundary values which are signi�cantly di�er-
ent from the remainder of the
ow�eld. In such cases where this occurs, it is
recommended that the solution be started with more conservative boundary
values, and then restarted using the �nal boundary values.

Restrictions/Limitations

The FREE boundary speci�cation is restricted to 3-D mesh surfaces (2-D
mesh surfaces should use the FRE2D boundary speci�cation). The far �eld

ow angle of attack must be speci�ed relative to the x axis, and produces
additional velocity components in the z coordinate direction only. Imposed
far-�eld velocity components in the y coordinate direction will always be
zero.

164 FREE - ADPAC08 Boundary Data File Speci�cations

Common Errors

� Application of FREE to a 2-D mesh system.

� Application of FREE to a boundary for which far �eld y coordinate
direction velocity components are required.

� Failure to specify the additional data values PTOT, TTOT, EMINF,
or ALPHA.

� Failure to generate the mesh with +x as the downstream
ow direction.

Boundary Data File Speci�cations - INLETA 165

INLETA

Cartesian Angle of Attack In
ow Boundary Con-
dition Procedure

Mesh Block #4
(49x9x13)

Inlet Boundary with Angled
Flow Requires an
INLETA Specification

Inlet Flow at
Angle of Attack

Mesh Block #3
(49x9x13)

Mesh Block #1
(65x9x13)

Mesh Block #2
(65x9x13)

z

x

y

i

k

j

Application

The INLETA speci�cation is used to impose a Cartesian angle of attack
in
ow boundary condition with uniform
ow properties at a local mesh sur-
face. The illustrative graphic above depicts a four block mesh system for a
turbofan engine geometry. The INLETA speci�er is utilized at the inlet of
mesh blocks 1 and 2 to set the angled in
ow necessary to simulate angle of
attack. This boundary condition has been utilized extensively as an inlet

ow speci�er for inlet, nacelle, and propfan geometries at angle of attack.

166 INLETA - Boundary Data File Speci�cations

Boundary Data File Format

The boundary data �le speci�cation for the mesh boundaries indicated in the
illustrative graphic for the INLETA boundary condition are given below:

INLETA 1 1 I I P P J K 1 1 1 9 1 13 1 9 1 13

PTOT TTOT ALPHA

1.0 1.0 20.0

INLETA 2 2 I I P P J K 1 1 1 9 1 13 1 9 1 13

PTOT TTOT ALPHA

1.0 1.0 20.0

Note that a complete INLETA speci�cation requires two additional lines fol-
lowing the INLETA boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common INLETA speci�cation
error.

Description

The INLETA keyword speci�es that a uniform property angle of attack in-

ow boundary condition is to be applied to the mesh surface speci�ed by
LFACE1 on the block speci�ed by LBLOCK1. INLETA is valid for both
cylindrical and Cartesian solution meshes (see the description of the input
variable FCART). The INLETA procedure utilizes a Reimann invariant
formulation to compute in
ow velocities based on a speci�ed upstream reser-
voir total pressure and total temperature, and a single Cartesian
ow angle
as shown in the illustrative graphic, above. Included in the INLETA proce-
dure is a special correction scheme which forces the
ow to pass into the
ow
domain. In other words, if the computed velocities result in a local out
ow at
the INLETA boundary, no matter how small the magnitude of the out
ow,
the velocities are reset to zero at that point. This boundary condition requires
the speci�cation of additional data, as shown in the boundary data format
descriptor above. The �rst additional line following the INLETA speci�-
cation is assumed to be a label and may contain any information; however,
for consistency it is recommended that the labels PTOT, TTOT, and AL-
PHA be used. The next line contains the values imposed for the variables

Boundary Data File Speci�cations - INLETA 167

PTOT, TTOT and ALPHA which represent the upstream reservoir to-
tal pressure, total temperature, and Cartesian
ow angle, respectively, used
in the INLETA characteristic solution sequence. The value of the PTOT
variable is the desired normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. The vari-
able ALPHA represents the
ow angle in degrees referenced to the x axis.
Positive
ow angles generate components of the
ow in the positive z direc-
tion. In any case, the inlet velocity component in the y direction is set to
zero. Values of ALPHA must lie between +/- 90 degrees. Naturally, poor
convergence or solution divergence can occur if PTOT or TTOT suggest
boundary values which are signi�cantly di�erent from the remainder of the

ow�eld, or if ALPHA is very large. In such cases where this occurs, it is
recommended that the solution be started with more conservative boundary
values, and then restarted using the �nal boundary values.

Restrictions/Limitations

The INLETA boundary speci�cation is restricted to 3-D mesh surfaces
(There is no equivalent 2-D mesh surface related to angle of attack. Addi-
tional details are available under the description of the INL2DA boundary
speci�cation). The angle of the velocity components speci�ed by the IN-
LETA procedure must always be referenced to the x coordinate axis, and it
is left to the user to generate a mesh which is consistent with this feature.

Common Errors

168 INLETA - Boundary Data File Speci�cations

� Application of INLETA to a 2-D mesh system.

� Application of INLETA to a boundary for which non-zero y compo-
nent velocities are required.

� Failure to specify the additional data values PTOT, TTOT, or AL-
PHA.

ADPAC08 Boundary Data File Speci�cations - INL2DG 169

INL2DG

Generic In
ow Boundary Condition

2−D Mesh Block #1
(28x23x1)

i

j

Flow

2−D Mesh Block #2
(28x9x1)

Inlet with Uniform
Normal Flow Requires an
INL2DG Specification

Application

The INL2DG speci�cation is used to impose a generic in
ow boundary
condition with uniform
ow properties where the in
ow velocity is normal
to the local mesh surface. The example graphic above illustrates a 2-D 2-
block mesh system mixing two adjacent streams of varying inlet properties.
In this case, the INL2DG boundary speci�cation is used to set the in
ow
boundary separately for each block to provide the desired incoming stream

ow properties. This boundary condition has been utilized extensively as an

170 INL2DG - ADPAC08 Boundary Data File Speci�cations

inlet
ow speci�er for 2-D duct
ows.

Boundary Data File Format

The boundary data �le speci�cation for the two mesh surfaces indicated in
the illustrative graphic for the INL2DG boundary condition are given below:

INL2DG 1 1 I I P P J K 1 1 1 23 1 2 1 23 1 2

PTOT TTOT

1.0 1.0

INL2DG 2 2 I I P P J K 1 1 1 9 1 2 1 9 1 2

PTOT TTOT

1.2 1.8

Note that a complete INL2DG speci�cation requires two additional lines fol-
lowing the INL2DG boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common INL2DG speci�cation
error.

Description

The INL2DG statement speci�es that a generic, uniform normal in
ow
boundary condition is to be applied to the 2-D mesh surface speci�ed by
LFACE1 on the block speci�ed by LBLOCK1. The INL2DG boundary
condition should be applied for those cases where any other \specialized"
in
ow boundary condition (such as INL2DT, etc.) does not apply. The
INL2DG boundary condition is also likely to be somewhat more e�cient
computationally than the other in
ow boundary condition procedures, at the
expense of some physical simpli�cation. INL2DG is valid for either cylin-
drical or Cartesian-based (see the input variable FCART) solutions on 2-D
meshes. The INL2DG procedure utilizes a Reimann invariant formulation
to compute in
ow velocities based on a speci�ed upstream reservoir total
pressure and total temperature. The velocity components at an INL2DG
boundary are always computed to be normal (no transverse velocity com-
ponents) to the local cell face at which the procedure is applied. Included

ADPAC08 Boundary Data File Speci�cations - INL2DG 171

in the INL2DG procedure is a special correction scheme which forces the

ow to pass into the
ow domain. In other words, if the computed velocities
result in a local out
ow at the INL2DG boundary, no matter how small the
magnitude of the out
ow, the velocities are reset to zero at that point. This
boundary condition requires the speci�cation of additional data, as shown
in the boundary data format descriptor above. The �rst additional line fol-
lowing the INL2DG speci�cation is assumed to be a label and may contain
any information; however, for consistency it is recommended that the labels
PTOT and TTOT be used. The next line contains the values imposed
for the variables PTOT and TTOT, which represent the upstream reser-
voir total pressure and total temperature, respectively, used in the INL2DG
characteristic solution sequence. The value of the PTOT variable is the de-
sired normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. Naturally,
poor convergence or solution divergence can occur if PTOT or TTOT sug-
gest boundary values which are signi�cantly di�erent from the remainder of
the
ow�eld. In such cases where this occurs, it is recommended that the so-
lution be started with more conservative boundary values, and then restarted
using the �nal boundary values.

Restrictions/Limitations

The INL2DG boundary speci�cation is restricted to 2-D mesh surfaces (3-D
mesh surfaces should use the INLETG boundary speci�cation).

Common Errors

172 INL2DG - ADPAC08 Boundary Data File Speci�cations

� Application of INL2DG to a 3-D mesh system.

� Application of INL2DG to a boundary for which transverse in
ow
velocity components are required.

� Failure to specify the additional data values PTOT or TTOT.

ADPAC08 Boundary Data File Speci�cations - INLETG 173

INLETG

Generic In
ow Boundary Condition

Mesh Block #1
(49x33x33)

Duct Inlet with Uniform
Normal Flow Requires an
INLETG Specification

i

k

j

Flow

Application

The INLETG speci�cation is used to impose a generic in
ow boundary
condition with uniform
ow properties where the in
ow velocity is normal to
the local mesh surface. This boundary condition has been utilized extensively
as an inlet
ow speci�er for for duct
ows and turbine blade cooling
ow.

174 INLETG - ADPAC08 Boundary Data File Speci�cations

Boundary Data File Format

The boundary data �le speci�cation for the mesh interface indicated in the
illustrative graphic for the INLETG boundary condition is given below:

INLETG 1 1 I I P P J K 1 1 1 33 1 33 1 33 1 33

PTOT TTOT

1.0 1.0

Note that a complete INLETG speci�cation requires two additional lines
following the INLETG boundary data �le speci�cation line. Failure to
properly specify the data in these additional lines is a common INLETG
speci�cation error.

Description

The INLETG statement speci�es that a generic, uniform normal in
ow
boundary condition is to be applied to the mesh surface speci�ed by LFACE1
on the block speci�ed by LBLOCK1. The INLETG boundary condition
should be applied for those cases where any other \specialized" in
ow bound-
ary condition (such as INLETR, INLETT, etc.) does not apply. The
INLETG boundary condition is also likely to be somewhat more e�cient
computationally than the other in
ow boundary condition procedures, at the
expense of some physical simpli�cation. INLETG may be utilized on either
cylindrical or Cartesian solution meshes (see the description of the input
variable FCART). The INLETG procedure utilizes a Reimann invariant
formulation to compute in
ow velocities based on a speci�ed upstream reser-
voir total pressure and total temperature. The velocity components at an
INLETG boundary are always computed to be normal (no transverse ve-
locity components) to the local cell face at which the procedure is applied.
Included in the INLETG procedure is a special correction scheme which
forces the
ow to pass into the
ow domain. In other words, if the computed
velocities result in a local out
ow at the INLETG boundary, no matter how
small the magnitude of the out
ow, the velocities are reset to zero at that
point. This boundary condition requires the speci�cation of additional data,
as shown in the boundary data format descriptor above. The �rst additional

ADPAC08 Boundary Data File Speci�cations - INLETG 175

line following the INLETG speci�cation is assumed to be a label and may
contain any information; however, for consistency it is recommended that
the labels PTOT and TTOT be used. The next line contains the values
imposed for the variables PTOT and TTOT, which represent the upstream
reservoir total pressure and total temperature, respectively, used in the IN-
LETG characteristic solution sequence. The value of the PTOT variable is
the desired normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. Naturally,
poor convergence or solution divergence can occur if PTOT or TTOT sug-
gest boundary values which are signi�cantly di�erent from the remainder of
the
ow�eld. In such cases where this occurs, it is recommended that the so-
lution be started with more conservative boundary values, and then restarted
using the �nal boundary values.

Restrictions/Limitations

The INLETG boundary speci�cation is not restricted to 3-D mesh sur-
faces (although for consistency 2-D mesh surfaces should use the INL2DG
boundary speci�cation).

Common Errors

� Application of INLETG to a boundary for which transverse in
ow
velocity components are required.

176 INLETG - ADPAC08 Boundary Data File Speci�cations

� Failure to specify the additional data values PTOT or TTOT.

ADPAC08 Boundary Data File Speci�cations - INLETR 177

INLETR

Radial Flow Turbomachinery In
ow Boundary
Condition

Mesh Block #1
(65x13x17)

Axial Variation of Radial Turbomachinery Inlet
Flow Variables Requires an INLETR Specification
(illustrated in Boundary Data File Format
statements below)

Circumferential
Flow Angle

Flow

ik

j

Axial
Flow Angle

Total
Temperature

Axial
Distance

Total
Pressure

x

y

z

Application

The INLETR speci�cation is used to impose an in
ow boundary condition
with axially varying
ow properties for radial
ow turbomachinery. The ex-
ample graphic above illustrates adjacent passages of a mesh system designed
to predict the
ow through a radial di�user. The inlet boundary is a ra-
dial surface of revolution with properties which vary in the axial direction,
and therefore INLETR is used to supply the desired
ow characteristics at
this boundary. INLETR has been successfully used for several radial
ow
turbomachinery geometries.

178 INLETR - ADPAC08 Boundary Data File Speci�cations

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the INLETR boundary condition is given below:

INLETR 1 1 I I P P J K 1 1 1 13 1 17 1 13 1 17

NDATA

4

AXIAL PTOT TTOT BETAX BETAT

0.1 0.99 0.99 5.0 -73.3

0.2 0.98 1.01 4.0 -75.8

0.3 0.97 1.00 3.0 -77.2

0.4 0.96 1.01 2.0 -79.0

Note that a complete INLETR speci�cation requires at least six additional
lines following the INLETR boundary data �le speci�cation line. Failure
to properly specify the data in these additional lines is a common INLETR
speci�cation error.

Description

The INLETR statement speci�es that an axial
ow turbomachinery inlet

ow boundary condition with axially varying
ow properties is to be ap-
plied to the mesh surface speci�ed by LFACE1 on the block speci�ed by
LBLOCK1. The INLETR boundary condition was speci�cally designed
as an in
ow boundary procedure for pure radial
ow turbomachinery ge-
ometries (axial and mixed
ow turbomachinery in
ow boundaries may be
speci�ed by the INLETT boundary condition). The INLETR procedure
utilizes a Reimann invariant formulation to compute in
ow velocities based
on a speci�ed axial variation in
ow properties (upstream reservoir total
pressure,total temperature, axial
ow angle, and circumferential
ow angle).
Included in the INLETR procedure is a special correction scheme which
forces the
ow to pass into the
ow domain. In other words, if the computed
velocities result in a local out
ow at the INLETR boundary, no matter how
small the magnitude of the out
ow, the velocities are reset to zero at that
point. This boundary condition requires the speci�cation of additional data,

ADPAC08 Boundary Data File Speci�cations - INLETR 179

as shown in the boundary data format descriptor above. The �rst additional
line following the INLETR speci�cation is assumed to be a label and may
contain any information; however, for consistency it is recommended that
the label NDATA be used. The line following the NDATA label contains
the number of axial data points which will be used to specify the desired
axial variation of properties at the in
ow boundary. At least 3 axial data
locations must be speci�ed to use the INLETR boundary condition. The
third line following the INLETR speci�er is again a label which outlines the
variables AXIAL, PTOT, TTOT, BETAX and BETAT. The remaining
NDATA lines contain the numeric information which de�nes the axial varia-
tion of the
ow properties speci�ed by these variables. The variableAXIAL
is the axial coordinate (remember, the centerline is the x axis) at which
the data is speci�ed. This value should be nondimensionalized in the same
manner as the mesh is nondimensionalized. This implies that the AXIAL
variable, when multiplied by the input variableDIAM will result in the true
geometric measurement in feet. Due to the interpolation procedures which
will ultimately be performed on the NDATA lines of radial in
ow data, it
is essential that the axial variations be speci�ed in a monotonic (constantly
increasing) fashion. The variables PTOT and TTOT represent the local
upstream reservoir total pressure and total temperature, respectively, used
in the INLETR characteristic solution sequence. The value of the PTOT
variable is the desired normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. The variables
BETAX and BETAT represent the local axial and circumferential
ow
angles expressed in degrees according to the coordinate orientation de�ned
in Figure 3.7.

Naturally, poor convergence or solution divergence can occur if any of

180 INLETR - ADPAC08 Boundary Data File Speci�cations

x

r r

O

333333
333333
333333
333333
333333
333333
333333
333333
333333
333333
333333
333333

V
V

V

r

x

BETAX (+)

333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333
333333333333333

3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333
3333333333333333

33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333
33333333333

V
r

VO

V

BETAT (−)

Axial Flow Angle Circumferential Flow Angle

Figure 3.7: ADPAC08 INLETR Boundary Speci�cation Flow Angle Refer-
ence

ADPAC08 Boundary Data File Speci�cations - INLETR 181

the values of PTOT,TTOT,BETAX, or BETAT suggest boundary values
which are signi�cantly di�erent from the remainder of the
ow�eld, or if the
axial variation of these values is excessively large. In such cases where this
occurs, it is recommended that the solution be started with more conservative
boundary values, and then restarted using the �nal boundary values.

Restrictions/Limitations

The INLETR boundary condition assumes that the mesh is oriented in such
a fashion that the radial coordinate is de�ned as r =

p
y2 + z2. For radial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the axial-like direction of
the mesh be de�ned by the j coordinate. An example of this type of mesh
system can be found in the illustrative graphic included at the beginning of
this description. The INLETR boundary speci�cation is restricted to 3-D
mesh surfaces.

Common Errors

� Application of INLETR to a 2-D mesh system.

� Failure to specify the additional data valuesNDATA,AXIAL,PTOT,
TTOT, BETAX. or BETAT.

� Axial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in improper interpolation.

� BETAX and/or BETAT orientation incorrectly interpreted.

� AXIAL, PTOT and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

182 INL2DT - ADPAC08 Boundary Data File Speci�cations

INL2DT

2-D Turbomachinery In
ow Boundary Condi-
tion

2−D Mesh Block #1
(49x17x1)

Radial Variation of Turbomachinery Inlet
Flow Variables Requires an INL2DT Specification
(illustrated in Boundary Data File Format
statements below) i

j

x

Radius

Radius

Total
Pressure

Circumferential
Flow Angle

Radial
Flow Angle

Total
Temperature

Flow

r

Application

The INL2DT speci�cation is used to impose an in
ow boundary condition
with radially varying
ow properties for 2-D axisymmetric mesh systems.
The example graphic illustrated above depicts an EXT2DT speci�cation
for a 2-D (axisymmetric)
ow solution for a turbomachinery blade row. This
boundary condition has been utilized extensively as an inlet
ow speci�er for
2-D turbomachinery
ow passages and solutions for embedded blade rows
with imposed axisymmetric body forces.

ADPAC08 Boundary Data File Speci�cations - INL2DT 183

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the INL2DT boundary condition is given below:

INL2DT 1 1 I I P P J K 1 1 1 17 1 2 1 17 1 2

NDATA

7

RAD PTOT TTOT BETAR BETAT

0.20 1.01 0.98 5.0 5.1

0.25 1.01 0.99 4.0 5.7

0.30 1.00 1.00 3.0 6.3

0.35 0.99 1.01 2.5 6.8

0.40 0.97 1.00 2.0 7.4

0.45 0.96 1.01 1.0 8.0

0.50 0.95 1.01 0.0 7.7

Note that a complete INL2DT speci�cation requires at least six additional
lines following the INL2DT boundary data �le speci�cation line. Failure
to properly specify the data in these additional lines is a common INL2DT
speci�cation error.

Description

The INL2DT statement speci�es that a turbomachinery-based radially vary-
ing in
ow boundary condition is to be applied to the 2-D mesh surface spec-
i�ed by LFACE1 on the block speci�ed by LBLOCK1. The INL2DT
boundary condition was speci�cally designed as an in
ow boundary proce-
dure for axial and mixed
ow axisymmetric turbomachinery geometries (ra-
dial
ow turbomachinery in
ow boundaries may be speci�ed by the INL2DR
boundary condition). The INL2DT procedure utilizes a Reimann invariant
formulation to compute in
ow velocities based on a speci�ed radial variation
in
ow properties (upstream reservoir total pressure,total temperature, radial

ow angle, and circumferential
ow angle). Included in the INL2DT proce-
dure is a special correction scheme which forces the
ow to pass into the
ow
domain. In other words, if the computed velocities result in a local out
ow

184 INL2DT - ADPAC08 Boundary Data File Speci�cations

at the INL2DT boundary, no matter how small the magnitude of the out-

ow, the velocities are reset to zero at that point. This boundary condition
requires the speci�cation of additional data, as shown in the boundary data
format descriptor above. The �rst additional line following the INL2DT
speci�cation is assumed to be a label and may contain any information;
however, for consistency it is recommended that the label NDATA be used.
The line following the NDATA label contains the number of radial data
points which will be used to specify the desired radial variation of properties
at the in
ow boundary. At least 3 radial data locations must be speci�ed to
use the INL2DT boundary condition. The third line following the INL2DT
speci�er is again a label which outlines the variablesRAD, PTOT, TTOT,
BETAR and BETAT. The remaining NDATA lines contain the numeric
information which de�nes the radial variation of the
ow properties spec-
i�ed by these variables. The variable RAD is the radius (remember, the
centerline is the x axis) at which the data is speci�ed. This value should
be nondimensionalized in the same manner as the mesh is nondimensional-
ized. This implies that the RAD variable, when multiplied by the input
variable DIAM will result in the true geometric measurement in feet. Due
to the interpolation procedures which will ultimately be performed on the
NDATA lines of radial in
ow data, it is essential that the radial variations
be speci�ed from the inner to the outer radius in a monotonic (constantly
increasing) fashion. The variables PTOT and TTOT represent the local
upstream reservoir total pressure and total temperature, respectively, used
in the INL2DT characteristic solution sequence. The value of the PTOT
variable is the desired normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. The variables
BETAR and BETAT represent the local radial and circumferential
ow
angles expressed in degrees according to the coordinate orientation de�ned

ADPAC08 Boundary Data File Speci�cations - INL2DT 185

in Figure 3.8. Naturally, poor convergence or solution divergence can occur if
any of the values of PTOT,TTOT,BETAR, or BETAT suggest boundary
values which are signi�cantly di�erent from the remainder of the
ow�eld,
or if the radial variation of these values is excessively large. In such cases
where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary
values.

Restrictions/Limitations

The INL2DT boundary condition assumes that the mesh is oriented in such
a fashion that the radial coordinate is de�ned as r =

p
y2 + z2. For axial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the radial-like direction
of the mesh be de�ned by the j coordinate. Examples of this type of mesh
system can be found in the chapter de�ning standard con�gurations. The
INL2DT boundary speci�cation is restricted to 2-D mesh surfaces (3-D mesh
surfaces should use the INLETT boundary speci�cation).

Common Errors

� Application of INL2DT to a 3-D mesh system.

� Failure to specify the additional data valuesNDATA,PTOT,TTOT,
BETAR. or BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in improper interpolation.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT and/or TTOT improperly normalized.

� Mesh/geometry not de�ned with the x axis as the centerline.

186 INLETT - ADPAC08 Boundary Data File Speci�cations

INLETT

Turbomachinery In
ow Boundary Condition

Mesh Block #1
(49x17x17)

Radial Variation of Turbomachinery Inlet
Flow Variables Requires an INLETT Specification
(illustrated in Boundary Data File Format
statements below)

ik

j

xy

z

Radius

RadiusRadius

Radius

Total
Pressure

Circumferential
Flow Angle

Radial
Flow Angle

Total
Temperature

Flow

Application

The INLETT speci�cation is used to impose an in
ow boundary condition
with radially varying
ow properties. The illustrative graphic above depicts
an application of the INLETT in
ow boundary condition for an H-type mesh
for a turbomachinery fan rotor blade passage. The INLETT speci�cation
provides the radial variation of
ow properties at the in
ow boundary result-
ing from experimental conditions, upstream blade rows, or other known inlet
property variation. This boundary condition has been utilized extensively as
an inlet
ow speci�er for turbomachinery blade passages and annular ducts.

ADPAC08 Boundary Data File Speci�cations - INLETT 187

Boundary Data File Format

The boundary data �le speci�cation for the mesh surface indicated in the
illustrative graphic for the INLETT boundary condition is given below:

INLETT 1 1 I I P P J K 1 1 1 17 1 17 1 17 1 17

NDATA

7

RAD PTOT TTOT BETAR BETAT

0.20 1.01 0.98 5.0 5.1

0.25 1.01 0.99 4.0 5.7

0.30 1.00 1.00 3.0 6.3

0.35 0.99 1.01 2.5 6.8

0.40 0.97 1.00 2.0 7.4

0.45 0.96 1.01 1.0 8.0

0.50 0.95 1.01 0.0 7.7

Note that a complete INLETT speci�cation requires six or more additional
lines following the INLETT boundary data �le speci�cation line. Failure
to properly specify the data in these additional lines is a common INLETT
speci�cation error.

Description

The INLETT statement speci�es that a turbomachinery-based radially vary-
ing in
ow boundary condition is to be applied to the mesh surface speci�ed
by LFACE1 on the block speci�ed by LBLOCK1. The INLETT bound-
ary condition was speci�cally designed as an in
ow boundary procedure for
axial and mixed
ow turbomachinery geometries (radial
ow turbomachinery
in
ow boundaries may be speci�ed by the INLETR boundary condition).
As such, the INLETT boundary procedure is only valid on mesh systems
employing the cylindrical solution algorithm (see the description of the input
variable FCART). The INLETT procedure utilizes a Reimann invariant
formulation to compute in
ow velocities based on a speci�ed radial variation
in
ow properties (upstream reservoir total pressure,total temperature, radial

ow angle, and circumferential
ow angle). Included in the INLETT proce-

188 INLETT - ADPAC08 Boundary Data File Speci�cations

dure is a special correction scheme which forces the
ow to pass into the
ow
domain. In other words, if the computed velocities result in a local out
ow
at the INLETT boundary, no matter how small the magnitude of the out-

ow, the velocities are reset to zero at that point. This boundary condition
requires the speci�cation of additional data, as shown in the boundary data
format descriptor above. The �rst additional line following the INLETT
speci�cation is assumed to be a label and may contain any information;
however, for consistency it is recommended that the label NDATA be used.
The line following the NDATA label contains the number of radial data
points which will be used to specify the desired radial variation of properties
at the in
ow boundary. At least 3 radial data locations must be speci�ed
to use the INLETT boundary condition. The third line following the IN-
LETT speci�er is again a label which outlines the variables RAD, PTOT,
TTOT, BETAR and BETAT. The remaining NDATA lines contain the
numeric information which de�nes the radial variation of the
ow properties
speci�ed by these variables. The variable RAD is the radius (remember,
the centerline is the x axis) at which the data is speci�ed. This value should
be nondimensionalized in the same manner as the mesh is nondimensional-
ized. This implies that the RAD variable, when multiplied by the input
variable DIAM will result in the true geometric measurement in feet. Due
to the interpolation procedures which will ultimately be performed on the
NDATA lines of radial in
ow data, it is essential that the radial variations
be speci�ed from the inner to the outer radius in a monotonic (constantly
increasing) fashion. The variables PTOT and TTOT represent the local
upstream reservoir total pressure and total temperature, respectively, used
in the INLETT characteristic solution sequence. The value of the PTOT
variable is the desired normalized upstream total pressure computed as:

PTOT =
Ptotal;desired

Pref

and the value of the TTOT variable is the desired normalized upstream total
temperature computed as:

TTOT =
Ttotal;desired

Tref

The variables Pref and Tref are speci�ed by the input variables PREF and
TREF. Values of PTOT and TTOT <0.0 are not permitted. The variables

ADPAC08 Boundary Data File Speci�cations - INLETT 189

BETAR and BETAT represent the local radial and circumferential
ow
angles expressed in degrees according to the coordinate orientation de�ned
in Figure 3.8. Naturally, poor convergence or solution divergence can occur if

any of the values of PTOT,TTOT,BETAR, or BETAT suggest boundary
values which are signi�cantly di�erent from the remainder of the
ow�eld,
or if the radial variation of these values is excessively large. In such cases
where this occurs, it is recommended that the solution be started with more
conservative boundary values, and then restarted using the �nal boundary
values.

Restrictions/Limitations

The INLETT boundary condition assumes that the mesh is oriented in such
a fashion that the radial coordinate is de�ned as r =

p
y2 + z2. For axial

ow turbomachinery, this implies that the axis of rotation (or the centerline)
coincides with the x axis. It is also required that the radial-like direction
of the mesh be de�ned by the j coordinate. Examples of this type of mesh
system can be found in the chapter de�ning standard mesh con�gurations.
The INLETT boundary speci�cation is restricted to 3-D mesh surfaces (2-D
mesh surfaces should use the INL2DT boundary speci�cation).

Common Errors

� Application of INLETT to a 2-D mesh system.

� Failure to specify the additional data valuesNDATA,PTOT,TTOT,
BETAR, or BETAT.

� Radial-like direction of the mesh is not the j coordinate.

� NDATA less than 3, resulting in improper interpolation.

� BETAR and/or BETAT orientation incorrectly interpreted.

� RAD, PTOT and/or TTOT improperly normalized.

190 INLETT - ADPAC08 Boundary Data File Speci�cations

x

r

r

O

3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333
3333333333

V
V

V
r

x

BETAR (+)

V
r

VO

V

BETAT (+)

Radial Flow Angle

Circumferential Flow Angle

Figure 3.8: ADPAC08 2-D Single Block Mesh Structure Illustration

ADPAC08 Boundary Data File Speci�cations - INLETT 191

� Mesh/geometry not de�ned with the x axis as the centerline.

192 KIL2D - ADPAC08 Boundary Data File Speci�cations

KIL2D

2-D Solution Kill Routine

2−D Mesh Block #1
(93x51x1)

Internal Mesh Obstruction
Requires a KIL2D Specification

i

j

Flow

Predicted Mach
Number Contours

Application

The KIL2D keyword is a tool to e�ectively neutralize or \kill" the time-
marching solution over a segment of the computational domain for a two-
dimensional mesh. The example graphic above illustrates a single block 2-D
mesh system used to predict the
ow through a converging/diverging nozzle
system with a square-edged obstruction. Rather than construct a multiple
block mesh system to treat this case (whereby the obstruction is essentially
gridded as block boundaries), the KIL2D speci�cation is used to neutralize
the advancing solution within the obstruction, and boundary conditions are
applied along the surface of the obstruction to predict this
ow.

Boundary Data File Format

ADPAC08 Boundary Data File Speci�cations - KIL2D 193

The boundary data �le speci�cation for the mesh interface indicated in the
illustrative graphic for the KIL2D boundary condition is given below:

KIL2D 1 1 I I M M L L 40 60 21 31 1 2 21 31 1 2

LSTART LEND

40 60

Note that a complete KIL2D speci�cation requires two additional lines fol-
lowing the KIL2D boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common KIL2D speci�cation
error.

Description

In cases where a portion of a 2-D mesh does not represent a valid
ow region,
the KIL2D speci�cation can be used, in conjunction with boundary condi-
tions speci�ed about the region to be \killed", to e�ectively remove a portion
of a given mesh block from the computational domain. An example of this
technique is illustrated in the illustrative graphic above. The �gure depicts
a single block mesh for the
ow through a simple nozzle. Suppose that for
whatever reason, the user wished to remove an internal rectangular portion
of the mesh (as if there were an obstruction placed in the
owpath). This
could be accomplished by subdividing the original mesh into several smaller
pieces, and applying the appropriate boundary conditions along the outer
boundaries of each block. This same con�guration could also be modeled
using the original mesh by invoking the KIL2D speci�cation for the points
inside the obstruction, and applying the proper boundary speci�cations along
the obstruction internally on the single-block mesh. This boundary condi-
tion (although really, this is more than a boundary condition) requires the
speci�cation of additional data, as shown in the format descriptor above.
The variable following the label LSTART indicates the starting index of
the LFACE1 coordinate direction (in the example above, this would be the
I coordinate direction) for the region to be \killed". The variable follow-
ing the label LEND indicates the �nal index in the LFACE1 coordinate
direction (again, the I coordinate in the example above) for the region to

194 KIL2D - ADPAC08 Boundary Data File Speci�cations

be \killed". The remaining coordinate indices for the region to be \killed"
are determined by the variables M1LIM1, M1LIM2 for the J coordinate
direction and N1LIM1, and N1LIM2 for the K coordinate direction. The
additional speci�cation of the LSTART, LEND variables imply that the
variables L1LIM, L2LIM are not used in this speci�cation. The KIL2D
routine fuctions by constantly resetting the
ow variables inside the region
to be killed to the initial values speci�ed by the RMACH input variable.
So, in e�ect, the solution is still being performed in the region to be killed,
but the updated results are constantly reset to a uniform
ow value. This
routine is not without drawbacks. First of all, although the mesh points are
e�ectively neutralized by the KIL2D speci�cation, other routines such as
the residual smoothing algorithm are unaltered, and under certain circum-
stances, this may cause poor convergence. It is also possible that divergence
may occur within the \killed" cells in spite of the resetting procedure. The
best advice is to manipulate block structures to eliminate the need for the
use of the KIL2D routine, but the user should be aware that under dire
circumstances this facility is available.

Restrictions/Limitations

The KIL2D boundary speci�cation is restricted to 2-D mesh surfaces (3-D
mesh surfaces should use the KILL boundary speci�cation).

Common Errors

� Application of KIL2D to a 3-D mesh system.

� Poor convergence due to residual smoothing across a \killed" region
(The residual smoothing operator can be turned o� through theRESID
input variable, although the time step must be restricted (see variable
CFL) to maintain numerical stability).

� Failure to specify the additional data values LSTART, LEND.

ADPAC08 Boundary Data File Speci�cations - KILL 195

KILL

Solution Kill Routine

Mesh Block #1
(93x25x17)

Internal Mesh Obstruction
Requires a KILL Specification

i

j

k

Application

The KILL keyword is a tool to e�ectively neutralize or \kill" the time-
marching solution over a segment of the computational domain for a three-
dimensional mesh. The example graphic above illustrates a single block
3-D O-type mesh system used to predict the
ow through a turbomachinery

196 KILL - ADPAC08 Boundary Data File Speci�cations

compressor rotor blade passage with a surface-mounted square-edged ob-
struction. Rather than construct a multiple block mesh system to treat this
case (whereby the obstruction is essentially gridded as block boundaries), the
KILL speci�cation is used to neutralize the advancing solution within the
obstruction, and boundary conditions are applied along the surface of the
obstruction to predict this
ow.

Boundary Data File Format

The boundary data �le speci�cation for the mesh system indicated in the
illustrative graphic for the KILL boundary condition is given below:

KILL 1 1 I I P P L L 49 49 1 19 1 5 1 19 1 5

LSTART LEND

49 51

KILL 1 1 I I P P L L 49 49 19 21 1 5 19 21 1 5

LSTART LEND

49 52

Note that a complete KILL speci�cation requires two additional lines fol-
lowing the KILL boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common KILL speci�cation
error.

Description

In cases where a portion of a 3-D mesh does not represent a valid
ow region,
theKILL speci�cation can be used, in conjunction with boundary conditions
speci�ed about the region to be \killed", to e�ectively remove a portion of
a given mesh block from the computational domain. An example of this
technique is illustrated in the illustrative graphic above. The �gure depicts a
single mesh block for the
ow through a high speed rotor passage upon which
surface instrumentation is mounted. The blockage associated with the sur-
face instrumentation is incorporated into the solution through the application
of the appropriate boundary conditions on the surface of the instrumenta-

ADPAC08 Boundary Data File Speci�cations - KILL 197

tion, and by applying the KILL procedure to negate the
ow variables of
the cells within the instrumentation itself. It should be noted that this e�ect
could be accomplished by subdividing the original mesh into several smaller
pieces, and applying the appropriate boundary conditions along the outer
boundaries of each block. This boundary condition (although really, this is
more than a boundary condition) requires the speci�cation of additional data,
as shown in the format descriptor above. The variable following the label
LSTART indicates the starting index in the LFACE1 coordinate direction
(in the example above, this would be the I coordinate direction) for the region
to be \killed". The variable following the label LEND indicates the �nal
index in the LFACE1 coordinate direction (again, the I coordinate in the
example above) for the region to be \killed". The remaining coordinate in-
dices for the region to be \killed" are determined by the variablesM1LIM1,
M1LIM2 for the J coordinate direction and N1LIM1, and N1LIM2 for
the K coordinate direction. The additional speci�cation of the LSTART,
LEND variables imply that the variables L1LIM, L2LIM are not used in
this speci�cation. The KILL routine fuctions by constantly resetting the

ow variables inside the region to be killed to the initial values speci�ed by
the RMACH input variable. So, in e�ect, the solution is still being per-
formed in the region to be killed, but the updated results are constantly reset
to a uniform
ow value. This routine is not without drawbacks. First of all,
although the mesh points are e�ectively neutralized by the KILL speci�ca-
tion, other routines such as the residual smoothing algorithm are unaltered,
and under certain circumstances, this may cause poor convergence. It is also
possible that divergence may occur within the \killed" cells in spite of the
resetting procedure. The best advice is to manipulate block structures to
eliminate the need for the use of thr KILL routine, but the user should be
aware that under dire circumstances this facility is available.

Restrictions/Limitations

The KILL boundary speci�cation is restricted to 3-D mesh surfaces (2-D
mesh surfaces should use the KIL2D boundary speci�cation).

Common Errors

198 KILL - ADPAC08 Boundary Data File Speci�cations

� Application of KILL to a 2-D mesh system.

� Poor convergence due to residual smoothing across a \killed" region
(The residual smoothing operator can be turned o� through theRESID
input variable, although the time step must be restricted (see variable
CFL) to maintain numerical stability).

� Failure to specify the additional data values LSTART, LEND.

ADPAC08 Boundary Data File Speci�cations - LAMSS 199

LAMSS

Porous Solid Surface Viscous No-Slip Boundary
Condition

Mesh Block #1
(151x17x11)

Blade Surface Porous
Boundary Requires a
LAMSS Specification

i

k

j

Essentially Solid, But Porous
Surface Simulated Using LAMSS
Boundary Specification

Application

The LAMSS speci�cation is used to impose a porous injection, no-slip
boundary condition for solid surfaces used in a viscous
ow solution. The
graphic above illustrates a 3-D body-centered O-type mesh system for a tur-
bine vane cascade. The LAMSS speci�cation is used to simulate the e�ects
of a �ne array of discrete cooling holes (porous injection) which are too small
to be individually gridded. The LAMSS provides a \smeared out" injection
which essentially simulates the global e�ects of the individual cooling sites.

Boundary Data File Format

200 LAMSS - ADPAC08 Boundary Data File Speci�cations

The boundary data �le speci�cations for the hub and blade surfaces in the
application described above and indicated in the illustrative graphic for the
LAMSS boundary condition are given below:

LAMSS 1 1 K K P P I K 1 1 1 151 1 11 1 151 1 11

PT TT RPMLOC TWALL ARATIO

1.1 0.70 0.0 0.00 0.10

Note that a complete LAMSS speci�cation requires two additional lines fol-
lowing the LAMSS boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common LAMSS speci�cation
error.

Description

The LAMSS statement speci�es that a solid surface viscous (no-slip)
boundary condition is to be applied to the mesh surface speci�ed by LFACE1
on the block speci�ed by LBLOCK1. The LAMSS boundary condition
may be applied to either a rotating or non-rotating surface and may indicate
a rotational speed which is di�erent than the rotational speed of the mesh
(RPM) to which the boundary condition is applied (the most common ex-
ample of this type of application is a mesh embedded in a rotating blade
passage with an endwall which is non-rotating). This boundary condition
requires the speci�cation of additional data, as shown in the boundary data
format descriptor above. The �rst additional line following the LAMSS
speci�cation is assumed to be a label and may contain any information;
however, for consistency it is recommended that the labels PTOT, TTOT,
RPMLOC, TWALL, and ARATIO be used. The next line contains the
values imposed for the variables PTOT, TTOT, RPMLOC, TWALL,
and ARATIO. The value of the PTOT and TTOT variables represent the
total pressure and total temperature of the injected
ow. These variables are
de�ned as:

(Ptotal)non�dimensional =
Ptotal

Pref

ADPAC08 Boundary Data File Speci�cations - LAMSS 201

(Ttotal)non�dimensional =
Ttotal
Pref

The value of the RPMWALL variable is the desired solid wall dimen-
sional rotational speed in revolutions per minute. This value is sign de-
pendent and follows the orientation for rotation as described in Figure 3.9.
The variable TWALL determines which type of temperature condition is
applied to the surface. If TWALL=0.0, an adiabatic wall is assumed. For
TWALL>0.0, a constant temperature surface with a nondimensional wall
temperature of TWALL de�ned as:

(Twall)non�dimensional =
Twall
Tref

is imposed. (Here Tref is the reference temperature imposed by the input �le
variable TREF. A value of TWALL<0.0 is not permitted. Naturally, poor
convergence or solution divergence can occur if RPMWALL or TWALL
suggest boundary values which are signi�cantly di�erent from the remainder
of the
ow�eld. In such cases where this occurs, it is recommended that
the solution be started with more conservative boundary values, and then
restarted using the �nal boundary values. Finally, the value of the variable
ARATIO represents the geometric \porosity" of the surface in the form
of the ratio of open (injection) surface area to total surface area for the
boundary segment being de�ned. In other words, if the porous surface has
an injection area of .01 square inch per square inch of total surface, then
ARATIO would be 0.01. ARATIO values less than zero or greater than
1.0 are not permitted.

Restrictions/Limitations

The boundary rotational speed imposed by the LAMSS boundary condition
can only be nonzero when using the cylindrical coordinate solution algorithm
in the ADPAC08 code. When using the Cartesian coordinate solution algo-
rithm FCART,FCARB= 1:0, the boundary rotational speed must be zero
(RPMWALL= 0:0 when FCART,FCARB= 1:0). Refer to the Chapter
on input �le parameters for a description of TREF, RPM, FCARB, and
FCART.

202 LAMSS - ADPAC08 Boundary Data File Speci�cations

Common Errors

� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a nonzero boundary rotational speed with the Carte-
sian coordinate solution algorithm.

� ARATIO value less than 0.0 or greater than 1.0.

� PTOT value signi�cantly di�erent than freestream.

� TTOT value signi�cantly di�erent than freestream.

� TWALL value signi�cantly di�erent than freestream.

Boundary Data File Speci�cations - MBCAVG 203

MBCAVG

Multiple Block Circumferential Averaging Rou-
tine for Multiple Blade Row Turbomachines

Mixing Plane Interface Between Adjacent
Blade Rows of Multistage Turbomachinery
Utilize the MBCAVG Specification

Mesh Block #1
(81x6x7)

Mesh Block #2
(81x6x7)

i

j

k

i

j

k

Application

The MBCAVG speci�cation is used in applications involving neighbor-

204 MBCAVG - Boundary Data File Speci�cations

ing relatively rotating blade rows which may consist of one or more mesh
blocks. TheMBCAVG speci�cation permits time-averaged interconnection
between these adjacent, blade row local mesh systems based on the \mixing
plane" approximation discussed in Chapter 2.0. The sample graphic illus-
trates the application of theMBCAVG boundary condition for the case of a
single stage turbine, whereby a single mesh block is used to represent a single
blade passage for each blade row in the turbine stage, and the MBCAVG
boundary routine is used to perform the mixing plane (circumferential/time-
averaged) coupling of the relatively rotating blade rows.

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interfaces indicated in the
illustrative graphic for the MBCAVG boundary condition are given below.
Note that block 1 requires multiple speci�cations due to the location of the
O-grid cut line.

MBCAVG 1 2 K K M M I J 7 7 1 6 1 6 36 46 1 6

NSEGS

1

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

2 K M 7 36 46 1 6

MBCAVG 1 2 K K M M I J 7 7 76 81 1 6 36 46 1 6

NSEGS

1

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

2 K M 7 36 46 1 6

MBCAVG 2 1 K K M M I J 7 7 36 46 1 6 1 6 1 6

NSEGS

2

LBLOCK2B LFACE2B LDIR2B L2LIMB M2LIM1B M2LIM2B N2LIM1B N2LIM2B

1 K M 7 1 6 1 6

1 K M 7 76 81 1 6

Note that a complete MBCAVG speci�cation generally requires at least
two MBCAVG statement lines in the boundary data �le for each mesh in-

Boundary Data File Speci�cations - MBCAVG 205

terface. In the example above, the �rst speci�cation provides the interblock
communication for block 1 from block 2, and the second speci�cation pro-
vides the communication for block 2 from block 1. It is a common error to
underspecify an MBCAVG boundary by only providing a single line per
interface.

Description:

TheMBCAVG speci�cation provides a \circumferential mixing plane" mesh
block communication scheme for steady state (time-averaged) analysis of
multiple blade row turbomachines. The MBCAVG operator permits the
speci�cation of multiple neighboring blocks upon which the circumferential
averaging is applied to provide boundary data for the current block of in-
terest. This multiple block averaging scheme permits the use of MBCAVG
for body-centered mesh systems (see the illustrative graphic above) and also
for multiple blade passage representations of neighboring blade rows. Due to
the complex nature of the circumferential averaging operator, this boundary
condition is restricted to speci�c mesh con�gurations. The following chart
describes the permitted mesh con�gurations for the MBCAVG speci�ca-
tion:

MBCAVG Boundary Speci�cation Mesh Coordinate Restrictions

LFACE1 LFACE2 Circumferential Grids Must be

(Block #1 (Block #2 Coordinate Aligned in this

Face) Face) Direction Coordinate

------- ------- --------------- ---------------

I I or K K or I J

J J only K I

K I or K K or I J

A second mesh restriction is that the interface separating two adjacent
blade rows must be a surface of revolution, and that meshes along this

interface have common axial and radial grid distributions. This restriction
simpli�es the averaging scheme provided by the MBCAVG speci�cation.

206 MBCAVG - Boundary Data File Speci�cations

The MBCAVG boundary condition requires the speci�cation of additional
data, as shown in the format descriptor above. The variable following the
label NBLKS de�nes the number of neighboring mesh block surfaces from
which the circumferentially averaged data is obtained. In the illustrative
graphic above, this value is simply 1 for the upstream inter-blade row bound-
aries, but is 2 for the downstream inter-blade row boundary because of the
fact that the matching boundary of the upstream blade row is composed
of two distinct mesh segments even though it is taken from a single mesh
block. The next line following the NSEGS variable is a label indicating the
variables which must be input for each of the NSEGS segments in the mix-
ing plane. The variables LBLOCK2B, LFACE2B, LDIR2B, L2LIMB,
M2LIM1B, M2LIM2B, N2LIM1B, and N2LIM2B represent the val-
ues of LBLOCK2, LFACE2, LDIR2, L2LIM, M2LIM1, M2LIM2,
N2LIM1, and N2LIM2 (see the beginning of this section for an expla-
nation of these variables) for each of the individual NSEGS segments used
in the mixing plane construction. The segments may be speci�ed in any
order.

Restrictions/Limitations

The BCPRR boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap), and have common axial
and radial mesh coordinates. The mesh must obey the coordinate restric-
tions outlined in the description above. The MBCAVG procedure is only
applicable to 3-D mesh systems.

Common Errors

� Failure to provide 2 or moreMBCAVG statements for each inter-blade
row interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1B, M2LIM2B,
N2LIM1B, N2LIM2B do not correctly de�ne the interface extents
on blocks LBLOCK1 and LBLOCK2B)

Boundary Data File Speci�cations - MBCAVG 207

� Attempt to use MBCAVG on a 2-D mesh block.

� Meshes do not obey the mesh coordinate restrictions listed in the de-
scription above.

� Meshes have dissimilar axial and radial coordinates at the interface.

� Application of MBCAVG to mesh interfaces which do not share a
common surface, or which have excess overlap.

� Application of MBCAVG to Cartesian solution mesh systems.

208 PATCH - ADPAC08 Boundary Data File Speci�cations

PATCH

Contiguous Mesh Block Interface Patching Scheme

Mesh Block #1
(151x17x11)

Mesh Block #2
(17x17x11)

Mesh Block #3
(17x17x11)

i

k

i

k

i k

Contiguous Mesh Block Interface Between
Grids 1 and 2 Requires a PATCH Specification
(illustrated in Boundary Data File Format
statements below)

(j direction is
out of page)

Spatially Periodic Mesh
Block Interface
on Grid 1 Requires a
PATCH Specification

Self−connected Mesh Block
Interface (O−type mesh)
on Grid 1 Requires a
PATCH Specification

Application

The PATCH speci�cation is used in any application involving neighboring
mesh blocks with a contiguous (common mesh points) interface. The graphic
above illustrates a PATCH connection between mesh blocks in a combina-
tion O-H mesh system for a turbine vane cascade. The PATCH boundary
speci�cation is used to provide block-to-block communication between mesh
blocks #1 and #2, and mesh blocks #1 and #3, as well as providing peri-
odic
ow boundary conditions for blocks #1, #2, and #3. In addition, the
PATCH routine is used to provide aerodynamic communication across the
O-mesh slit for mesh block #1. The PATCH boundary condition is perhaps
the most common speci�cation resulting from the use of the multiple blocked
mesh capabilities of the ADPAC08 code.

ADPAC08 Boundary Data File Speci�cations - PATCH 209

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the PATCH boundary condition are given below:

PATCH 1 1 K K M M I J 11 11 6 71 1 17 146 81 1 17 Blk #1 Per

PATCH 1 1 K K M M I J 11 11 81 146 1 17 71 6 1 17 Blk #1 Per

PATCH 2 2 K K P M I J 1 11 1 17 1 17 1 17 1 17 Blk #2 Per

PATCH 2 2 K K M P I J 11 1 1 17 1 17 1 17 1 17 Blk #2 Per

PATCH 3 3 K K P M I J 1 11 1 17 1 17 1 17 1 17 Blk #3 Per

PATCH 3 3 K K M P I J 11 1 1 17 1 17 1 17 1 17 Blk #3 Per

PATCH 1 1 I I M P J K 151 1 1 17 1 11 1 17 1 11 Blk #1 O-Grid

PATCH 1 1 I I M P J K 1 151 1 17 1 11 1 17 1 11 Blk #1 O-Grid

PATCH 1 2 K I M M J I 11 17 71 81 1 17 1 17 1 11 Blks #1-#2

PATCH 2 1 I K M M K J 17 11 1 17 1 11 71 81 1 17 Blks #1-#2

PATCH 1 3 K I M P J I 11 1 1 6 1 17 1 17 6 1 Blks #1-#3

PATCH 3 1 I K P M K J 1 11 1 17 1 6 6 1 1 17 Blks #1-#3

PATCH 1 3 K I M P J I 11 1 146 151 1 17 1 17 11 6 Blks #1-#3

PATCH 3 1 I K P M K J 1 11 1 17 6 11 151 146 1 17 Blks #1-#3

Note that a complete PATCH speci�cation generally requires two PATCH
statement lines in the boundary data �le. For any two grid blocks (1 and 2
for example), the �rst speci�cation provides the interblock communication
for block 1 from block 2, and the second speci�cation provides the commu-
nication for block 2 from block 1. It is a common error to underspecify a
PATCH boundary by only providing a single line per interface.

Description

The PATCH statement is utilized to provide direct block to block commu-
nication between mesh blocks with contiguous grid points. This is perhaps
the most common, and most useful of the boundary condition speci�cations,
and therefore, a lengthy discussion is given to complete this description.
For many complicated geometries requiring a multiple block mesh system, a
common approach is to generate mesh systems with coincident mesh points
along all, or at least part of the mesh block interfaces. This property is

210 PATCH - ADPAC08 Boundary Data File Speci�cations

henceforth referred to as a contiguous mesh block interface (coincident mesh
points). By default, the boundary condition speci�cation must have a one
to one correspondence between mesh points in block LBLOCK1 and mesh
points in block LBLOCK2. This type of boundary is particularly e�ec-
tive in the �nite-volume
ow solver due to the fact that local and global
conservation of the
ow variables can be accomplished without special treat-
ment, by direct substitution of the neighboring block
ow variables into the
phantom cells of the block of interest. The PATCH boundary condition
performs this direct substitution between blocks to provide an aerodynamic
communication between neighboring blocks with a contiguous interface. A
PATCH speci�cation can also be imposed connecting a block to itself. In
fact, this is the manner by which spatial periodicity is enforced in many
cases, including the Standard Con�gurations described in Chapter 5. The
PATCH boundary condition requires no additional data beyond the initial
speci�cation line, but does require the proper speci�cation of the variables
LSPEC1 and LSPEC2. For boundary conditions involving more than one
mesh block (such as PATCH), it is possible that the connection between
blocks may involve communication between di�erent grid surfaces (for exam-
ple, an i=constant mesh face in LBLOCK1 connects to a j=constant mesh
face in LBLOCK2) and that the remaining indices in block LBLOCK2 cor-
respond to di�erent coordinates in block LBLOCK1. The speci�cation of
the variables LSPEC1, LSPEC2 serve to eliminate any confusion between
contiguous boundary patches involving dissimilar mesh coordinates. In ev-
ery case, when a particular coordinate direction is speci�ed by the variable
LFACE1, the remaining coordinate indices de�ning the extent of the patch
on LFACE1 are speci�ed in their \natural" (i, j, k) order. For example,
if LFACE1 is an i=constant mesh surface, then the variables M1LIM1,
M1LIM2 control the indices in the j coordinate direction and the variables
N1LIM1, N1LIM2 control the indices in the k coordinate direction. Simi-
larly, if LFACE2 is a k=constant mesh surface, then the variablesM2LIM1,
M2LIM2 control the indices in the i coordinate direction and the variables
N2LIM1, N2LIM2 control the indices in the j coordinate direction, and
so on. Now, in order to relate the coordinate indices in block LBLOCK2
with the indices speci�ed in block LBLOCK1, the special terms LSPEC1
and LSPEC2 are utilized. The variables LSPEC1 and LSPEC2 should
be de�ned as either I, J, or K, based on the connection scheme between the
two blocks. The LSPEC1 variable should de�ne the coordinate direction

ADPAC08 Boundary Data File Speci�cations - PATCH 211

in block LBLOCK1 which corresponds to the �rst remaining coordinate
in block LBLOCK2 (whose range is de�ned by M2LIM1, M2LIM2),
and the LSPEC2 variable should de�ne the coordinate direction in block
LBLOCK1 which corresponds to the second remaining coordinate in block
LBLOCK2 (whose range is de�ned byN2LIM1, N2LIM2). The PATCH
speci�cation may also be used for two-dimensional meshes as long as the
third coordinate direction (k) limits N1LIM1, N1LIM2, and N2LIM1,
N2LIM2 are \1" and \2", respectively (2-D patches are speci�ed as if the
mesh were actually 2 cells deep in the k direction).

Restrictions/Limitations

The PATCH boundary speci�cation is restricted to mesh interfaces which
have a one to one mesh point correspondance. To maintain the conservative
property of the governing equations, the PATCH routine assumes that the
mesh points between the 2 blocks of interest are either contiguous, or share
a spatially periodic relationship, and it is left to the user to verify that this
is so.

Common Errors

� Failure to provide 2 PATCH statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Incorrectly speci�ed block coordinate direction relationships (values of
LSPEC1, LSPEC2 do not correctly de�ne the coordinate connection
scheme between block LBLOCK1 and block LBLOCK2).

� PATCH boundary speci�cation for a periodic boundary is applied to
a nonperiodic mesh.

212 PATCH - ADPAC08 Boundary Data File Speci�cations

� PATCH boundary speci�cation applied to a spatially periodic Carte-
sian geometry using the cylindrical coordinate solution scheme or vice
versa (results in incorrect spatial periodicity relationships) ThePATCH
boundary speci�cations for Cartesian geometries must use the Carte-
sian solution algorithm in ADPAC08 (see input variable FCART).

ADPAC08 Boundary Data File Speci�cations - PINT 213

PINT

Non-Contiguous Mesh Block Interface Patching
Scheme

Mesh Block #1
(51x11x45)

Mesh Block #2
(51x11x51)

Non−Contiguous Mesh Block Interface Between
Grids 1 and 2 Requires a PINT Specification
(illustrated in Boundary Data File Format
statements below)

i
k j

Application

The PINT speci�cation is used in any application involving neighboring
mesh blocks which share a common mating surface (either contiguous or
non-contiguous). The example graphic above illustrates a two-dimensional
plane of a two block 3-D mesh system used to predict the
ow through a
converging/diverging nozzle. The mesh points at the interface between the
two grids (near the nozzle throat) are non-contiguous, and therefore, the
PINT speci�cation is used to provide communication between the adjacent
mesh blocks.

Boundary Data File Format

214 PINT - ADPAC08 Boundary Data File Speci�cations

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the PINT boundary condition are given below:

PINT 1 2 I I M P L L 51 1 1 11 1 45 1 11 1 51

PINT 2 1 I I P M L L 1 51 1 11 1 51 1 11 1 45

Note that a completePINT speci�cation generally requires two PINT state-
ment lines in the boundary data �le. In the example above, the �rst speci�-
cation provides the interblock communication for block 1 from block 2, and
the second speci�cation provides the communication for block 2 from block
1. It is a common error to underspecify a PINT boundary by only providing
a single line per interface.

Description

The PINT boundary statement provides a means for block to block com-
munication for cases involving neighboring meshes which share a common
surface, but not necessarily common grid points along a block boundary
(meshes with contiguous mesh points should use the PATCH boundary
speci�cation). The PINT speci�cation instructs the ADPAC08 code to per-
form a weighted interpolation to determine the appropriate
ow variables for
the phantom cells, based on the non-contiguous data structure of the neigh-
boring mesh. An example of this type of boundary is given in the illustrative
graphic. The bounding surfaces of each block should lie on a common sur-
face (no signi�cant overlap). The interpolation scheme used in the PINT
speci�cation is not conservative, and therefore the solution accuracy can be
degraded by this procedure. During code execution, the �rst time the PINT
speci�cation is encountered, the code initiates a search to determine the in-
terpolation stencil for the given array of points in block LBLOCK1 based
on the data in block LBLOCK2. This stencil is then saved to eliminate
the search routine at every application of PINT. In order to provide storage
for the interpolation stencil information, a separate array system based on
the dimensioning parameter NRAINT (see Section 3.3) is utilized. The
PINT boundary condition requires no additional data beyond the initial
speci�cation line, but does require some extra care when used. The primary

ADPAC08 Boundary Data File Speci�cations - PINT 215

precaution is that the PINT procedure is based entirely on a simpli�ed
interpolations scheme, and hence, does not maintain either global or local
conservation of
ow variables across the mesh interface.

Restrictions/Limitations

The PINT boundary speci�cation is restricted to mesh interfaces which lie
on a common surface (no signi�cant overlap). The PINT procedure is only
applicable to 3-D mesh systems. PINT can not be used across multiple
processors in a parallel computing environment.

Common Errors

� Failure to provide 2 PINT statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Attempt to use PINT for a periodic boundary (no special spatial pe-
riodicity arrangement is available in PINT.

� Attempt to use PINT on a 2-D mesh block.

� Failure to provide enough storage for the PINT interpolation stencils
via the NRAINT parameter.

� Application of PINT to mesh interfaces which do not share a common
surface, or which have excess overlap.

� Attempt to use PINT across multiple processors in a parallel comput-
ing environment.

216 ADPAC08 SS2DIN - Boundary Data File Speci�cations

SS2DIN

2-D Solid Surface Inviscid No Through-Flow
Boundary Condition

Blade Surface No Through−Flow
Boundary Requires an
SS2DIN Specification
(Illustrated in Boundary
Data File Format Statement
Below)

i

j

2−D Mesh Block #1
(193x13x1)

x

y

Application

The SS2DIN speci�cation is used to impose a no through-
ow inviscid solid
surface condition for any solid surface in a 2-D solution. The illustrative
graphic above depicts a 2-D C-type Cartesian mesh system for a planar
turbine airfoil cascade. The SS2DIN descriptor is applied to denote the
airfoil no through-
ow surface boundary condition. Applications for 2-D
turbmomachinery calculations are typically the endwall (axisymmetric
ow)
or airfoil (Cartesian
ow) surfaces.

ADPAC08 Boundary Data File Speci�cations - SS2DIN 217

Boundary Data File Format

The boundary data �le speci�cation for the mesh boundary indicated in the
illustrative graphic for the SS2DIN boundary condition is given below:

SS2DIN 1 1 J J P P I K 1 1 65 161 1 2 65 161 1 2

No additional data beyond the boundary data �le descriptor is required.

Description

The SS2DIN statement speci�es that a solid surface inviscid (no through-

ow) boundary condition is to be applied to the mesh surface speci�ed by
LFACE1 on the block speci�ed by LBLOCK1. The SS2DIN procedure
is the 2-D equivalent of SSIN. The SS2DIN boundary condition may be
applied to either rotating or non-rotating surfaces. The rotational speed of
the boundary is irrelevant for an inviscid surface on a properly de�ned mesh
(either the boundary rotates with the mesh, or, in the case where the rota-
tional speeds of the mesh and boundary di�er, there is no di�erence in the
aplication of an inviscid surface boundary condition). SS2DIN may be ap-
plied for either cylindrical or Cartesian solution meshes (see the description
of the input variable FCART). The SS2DIN algorithm imposes no
ow
normal to the local mesh surface, but permits tangential velocity compo-
nents at the boundary. The current SS2DIN algorithm is based on a loose
speci�cation of the local static pressure (@p

@n
= 0) and is known to introduce

some nonphysical loss. However, it has been the authors experience that
this formulation provides the best mix of accuracy and reliability for most
applications. It should be noted that the SS2DIN boundary condition is
also very useful as a method of imposing a symmetry plane in a solution
for geometries which possess spatial symmetry. Naturally, the mesh must be
generated in a manner which represents this spatial symmetry as well.

Restrictions/Limitations

The SS2DIN boundary speci�cation is restricted to 2-D mesh surfaces (3-D

218 ADPAC08 SS2DIN - Boundary Data File Speci�cations

mesh surfaces should use the SSIN boundary speci�cation).

Common Errors

� Application of SS2DIN to a 3-D mesh system.

� Application of SS2DIN as a symmetry plane condition for a mesh
which does not represent a spatially symmetric geometry.

ADPAC08 Boundary Data File Speci�cations - SS2DVI 219

SS2DVI

2-D Solid Surface Viscous No-Slip Boundary
Condition

Blade Surface No−Slip
Boundary Requires an
SS2DVI Specification
(Illustrated in Boundary
Data File Format Statement
Below)

i

j

2−D Mesh Block #1
(193x33x1)

x

y

Application

The SS2DVI speci�cation is used to impose a no-slip boundary condition for
any solid surface used in a 2-D viscous
ow solution. The example graphic
above illustrates a 2-D C-type mesh system used to predict the
ow through a
planar 2-D turbine vane cascade. Applications for 2-D turbmomachinery cal-
culations are typically the endwall surfaces (both rotating and non-rotating
surfaces) for an axisymmetric 2-D solution or non-rotating solid surfaces in

220 SS2DVI - ADPAC08 Boundary Data File Speci�cations

Cartesian 2-D solutions.

Boundary Data File Format:

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the SS2DVI boundary condition are given below:

SS2DVI 1 1 J J P P I K 1 1 65 161 1 2 65 161 1 2

RPMWALL TWALL

0.0 0.0

Note that a complete SS2DVI speci�cation requires two additional lines fol-
lowing the SS2DVI boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common SS2DVI speci�cation
error.

Description

The SS2DVI statement speci�es that a solid surface viscous (no-slip)
boundary condition is to be applied to the mesh surface speci�ed by LFACE1
on the block speci�ed by LBLOCK1. The SS2DVI procedure is the 2-D
equivalent of SSVI. The SS2DVI boundary condition may be applied to ei-
ther a rotating or non-rotating surfaces and may indicate a rotational speed
which is di�erent than the rotational speed of the mesh (RPM) to which the
boundary condition is applied. This boundary condition requires the speci-
�cation of additional data, as shown in the boundary data format descriptor
above. The �rst additional line following the SS2DVI speci�cation is as-
sumed to be a label and may contain any information; however, for consis-
tency it is recommended that the labelsRPMWALL and TWALL be used.
The next line contains the values imposed for the variablesRPMWALL and
TWALL. The value of the RPMWALL variable is the desired solid wall
dimensional rotational speed in revolutions per minute. This value is sign
dependent and follows the orientation for rotation as described in Figure 3.9.
The variable TWALL determines which type of temperature condition is

applied to the surface. If TWALL=0.0, an adiabatic wall is assumed. For

ADPAC08 Boundary Data File Speci�cations - SS2DVI 221

ADPAC Rotational Speed Orientation

xO

r

ADPAC rotation is always about the X axis

RPM (+)
ADVR (+)

RPM (−)
ADVR (−)

Figure 3.9: ADPAC08 Rotational Speed Orientation Illustration

222 SS2DVI - ADPAC08 Boundary Data File Speci�cations

TWALL>0.0, a constant temperature surface with a nondimensional wall
temperature of TWALL de�ned as:

(Twall)non�dimensional =
Twall
Tref

is imposed. (Here Tref is the reference temperature imposed by the input �le
variable TREF. A value of TWALL<0.0 is not permitted. Naturally, poor
convergence or solution divergence can occur if RPMWALL or TWALL
suggest boundary values which are signi�cantly di�erent from the remainder
of the
ow�eld. In such cases where this occurs, it is recommended that
the solution be started with more conservative boundary values, and then
restarted using the �nal boundary values.

Restrictions/Limitations

The SS2DVI boundary speci�cation is restricted to 2-D mesh surfaces (3-D
mesh surfaces should use the SSVI boundary speci�cation). The bound-
ary rotational speed imposed by the SS2DVI boundary condition can only
be non-zero when using the cylindrical coordinate solution algorithm in the
ADPAC08 code, and may only be applied to axisymmetric 2-D meshes.
When using the Cartesian coordinate solution algorithm (FCART= 1:0),
the boundary rotational speed must be zero (RPMWALL= 0:0 when FCART=
1:0). Refer to the chapter on input �le parameters for a description ofTREF,
RPM, and FCART.

Common Errors

� Incorrect sign for value of boundary rotational speed RPMWALL.

� Attempt to utilize a non-zero boundary rotational speed with the Carte-
sian coordinate solution algorithm.

� Application of SS2DVI to a 3-D mesh system.

Boundary Data File Speci�cations - SSIN 223

SSIN

Solid Surface Inviscid No-Through-Flow Bound-
ary Condition

Mesh Block #1
(151x17x11)

Blade Surface No Through−Flow
Boundary Requires an
SSIN Specification

i

k

j

Hub Surface No Through−Flow
Boundary Requires an
SSIN Specification

Application

The SSIN speci�cation is used to impose a no-through-
ow inviscid solid
surface condition for any solid surface in a solution. The graphic above illus-
trates a 3-D body-centered O-type mesh system for a turbine vane cascade.
For turbmomachinery calculations, the SSVI speci�cation is normally used
to de�ne the blade and endwall surfaces (both rotating and non-rotating
surfaces may be described).

224 SSIN - Boundary Data File Speci�cations

Boundary Data File Format

The boundary data �le speci�cation for the mesh boundary indicated in the
illustrative graphic for the SSIN boundary condition is given below:

SSIN 1 1 J J P P I K 1 1 1 151 1 11 1 151 1 11

SSIN 1 1 K K P P I K 1 1 1 151 1 17 1 151 1 17

No additional data beyond the boundary data �le descriptor is required.

Description

The SSIN statement speci�es that a solid surface inviscid (no through-

ow) boundary condition is to be applied to the mesh surface speci�ed by
LFACE1 on the block speci�ed by LBLOCK1. The SSIN boundary con-
dition may be applied to either rotating or non-rotating surfaces. The rota-
tional speed of the boundary is irrelevant for an inviscid surface on a prop-
erly de�ned mesh (either the boundary rotates with the mesh, or, in the
case where the rotational speeds of the mesh and boundary di�er, there is
no di�erence in the application of an inviscid surface boundary condition).
The SSIN algorithm imposes no
ow normal to the local mesh surface, but
permits tangential velocity components at the boundary. The current SSIN
algorithm is based on a loose speci�cation of the local static pressure (@p

@n
= 0)

and is known to introduce some nonphysical loss. However, it has been the
authors experience that this formulation provides the best mix of accuracy
and reliability for most applications. It should be noted that the SSIN
boundary condition is also very useful as a method of imposing a symmetry
plane in a solution for geometries which possess spatial symmetry. Natu-
rally, the mesh must be generated in a manner which represents this spatial
symmetry as well.

Restrictions/Limitations

The SSIN boundary speci�cation is restricted to 3-D mesh surfaces (2-D
mesh surfaces should use the SS2DIN boundary speci�cation).

Boundary Data File Speci�cations - SSIN 225

Common Errors

� Application of SSIN to a 2-D mesh system.

� Application of SSIN as a symmetry plane condition for a mesh which
does not represent a spatially symmetric geometry

226 SSVI - ADPAC08 Boundary Data File Speci�cations

SSVI

Solid Surface Viscous No-Slip Boundary Condi-
tion

Mesh Block #1
(151x17x11)

Blade Surface No−Slip
Boundary Requires an
SSVI Specification

i

k

j

Hub Surface No−Slip
Boundary Requires an
SSVI Specification

Application

The SSVI speci�cation is used to impose a no-slip boundary condition for
solid surfaces used in a viscous
ow solution. The graphic above illustrates a
3-D body-centered O-type mesh system for a turbine vane cascade. For turb-
momachinery calculations, the SSVI speci�cation is normally used to de�ne
the blade and endwall surfaces (both rotating and non-rotating surfaces may

ADPAC08 Boundary Data File Speci�cations - SSVI 227

be described).

Boundary Data File Format

The boundary data �le speci�cations for the hub and blade surfaces in the
application described above and indicated in the illustrative graphic for the
SSVI boundary condition are given below:

SSVI 1 1 J J P P I K 1 1 1 151 1 11 1 151 1 11

RPMWALL TWALL

0.0 0.0

SSVI 1 1 K K P P I K 1 1 1 151 1 17 1 151 1 17

RPMWALL TWALL

0.0 0.0

Note that a complete SSVI speci�cation requires two additional lines fol-
lowing the SSVI boundary data �le speci�cation line. Failure to properly
specify the data in these additional lines is a common SSVI speci�cation
error.

Description

The SSVI statement speci�es that a solid surface viscous (no-slip) bound-
ary condition is to be applied to the mesh surface speci�ed by LFACE1 on
the block speci�ed by LBLOCK1. The SSVI boundary condition may be
applied to either a rotating or non-rotating surface and may indicate a rota-
tional speed which is di�erent than the rotational speed of the mesh (RPM)
to which the boundary condition is applied (the most common example of this
type of application is a mesh embedded in a rotating blade passage with an
endwall which is non-rotating). This boundary condition requires the speci-
�cation of additional data, as shown in the boundary data format descriptor
above. The �rst additional line following the SSVI speci�cation is assumed
to be a label and may contain any information; however, for consistency it
is recommended that the labels RPMWALL and TWALL be used. The
next line contains the values imposed for the variables RPMWALL and

228 SSVI - ADPAC08 Boundary Data File Speci�cations

TWALL. The value of the RPMWALL variable is the desired solid wall
dimensional rotational speed in revolutions per minute. This value is sign
dependent and follows the orientation for rotation as described in Figure 3.9.
The variable TWALL determines which type of temperature condition is
applied to the surface. If TWALL=0.0, an adiabatic wall is assumed. For
TWALL>0.0, a constant temperature surface with a nondimensional wall
temperature of TWALL de�ned as:

(Twall)non�dimensional =
Twall
Tref

is imposed. (Here Tref is the reference temperature imposed by the input �le
variable TREF. A value of TWALL<0.0 is not permitted. Naturally, poor
convergence or solution divergence can occur if RPMWALL or TWALL
suggest boundary values which are signi�cantly di�erent from the remainder
of the
ow�eld. In such cases where this occurs, it is recommended that
the solution be started with more conservative boundary values, and then
restarted using the �nal boundary values.

Restrictions/Limitations

The SSVI boundary speci�cation is restricted to 3-D mesh surfaces (2-
D mesh surfaces should use the SS2DVI boundary speci�cation). The
boundary rotational speed imposed by the SSVI boundary condition can
only be nonzero when using the cylindrical coordinate solution algorithm in
the ADPAC08 code. When using the Cartesian coordinate solution algo-
rithm FCART,FCARB= 1:0, the boundary rotational speed must be zero
(RPMWALL= 0:0 when FCART,FCARB= 1:0). Refer to the Chapter
on input �le parameters for a description of TREF, RPM, FCARB, and
FCART.

Common Errors

� Incorrect sign for value of boundary rotational speed RPMWALL.

ADPAC08 Boundary Data File Speci�cations - SSVI 229

� Attempt to utilize a nonzero boundary rotational speed with the Carte-
sian coordinate solution algorithm.

� Application of SSVI to a 2-D mesh system.

230 SYSTEM - ADPAC08 Boundary Data File Speci�cations

SYSTEM

ADPAC08 UNIX system Call Speci�cation

BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB
BBBBBBBBBBB

ADPAC

@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@
@@@@@@@@@

Boundary
Condition
Loop

....

....

....

....

....

....
SYSTEM

Time−Marching Loop

BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB
BBBBBBBB

BBBBBB
BBBBBB

UNIX>

Application

The SYSTEM speci�cation is not a boundary condition as such, but directs
the ADPAC08 code to perform a UNIX system call at every application of the
boundary condition loop. In the application illustrated above, every time the
ADPAC08 code encounters the boundary condition speci�cation SYSTEM
the code is directed to perform a UNIX system call of the command UP-
DATEBC, which is presumably a user-speci�ed code used to update certain
boundary variables (see sample format below). This new data could then
be imported using the BDATIN boundary speci�cation. The SYSTEM
function can quickly lead to trouble due to the number of times it is called
within the time-marching strategy, and the user should thoroughly review

ADPAC08 Boundary Data File Speci�cations - SYSTEM 231

the documentation below before attempting to use this facility.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the SYSTEM boundary condition are given below:

SYSTEM 1 1 J J P P I K 1 1 11 21 1 11 11 21 1 11

INTERVAL

1

COMMAND

/usr/local/bin/updatebc

Note that a complete SYSTEM speci�cation requires the speci�cation of
additional data beyond the standard boundary speci�cation line.

Description

The SYSTEM statement is provided to permit the speci�cation of a UNIX
system call from within the ADPAC08 code. Once the SYSTEM speci�ca-
tion is directed into the ADPAC08 code, at a speci�ed interval of iterations,
during every execution of the boundary condition loop, when the SYSTEM
speci�cation is encountered, the code executes the command provided by the
SYSTEM speci�cation and pending successful completion, continues exe-
cution. The SYSTEM speci�cation is based on the FORTRAN instrinsic
system function which must be available in the compiling system. It should
be noted that the command dictated by the SYSTEM speci�cation will
be performed every time the boundary condition loop is encountered. This
suggests that the system call will be made a minimum of four times for each
iteration of the time-marching scheme (for the four stage scheme). This num-
ber can grow rapidly if more complicated iteration strategies are used such
as multigrid, subiterations, etc., and the user should be warned that such
redundant system calls can wreak havoc on an otherwise friendly solution.
A SYSTEM speci�cation, in conjunction with the BDATIN/BDATOU
boundary data speci�ers can be e�ectively combined to provide a run time

232 SYSTEM - ADPAC08 Boundary Data File Speci�cations

interface between the ADPAC08 code and an external
ow solver.

A SYSTEM speci�cation requires four additional lines in addition to
the normal boundary data �le descriptor, as shown above. The �rst addi-
tional line simply contains the label for the iteration interval INTERVAL,
followed by the actual value of INTERVAL The SYSTEM routine will
only be invoked every INTERVAL time-marching iterations. The next line
contains the label for the system call command (COMMAND) variable.
The following line contains the actual UNIX command to be issued at every
SYSTEM encounter in the boundary condition loop.

Restrictions/Limitations

Data provided in the SYSTEM speci�cation should represent a valid UNIX
system command. The FORTRAN intrinsic function system must be avail-
able on the compiling system. The SYSTEM function is not available on
the Cray or nCUBE computers.

Common Errors

� Invalid UNIX system command provided in SYSTEM boundary spec-
i�cation.

� Failure to provide the additional data INTERVAL andCOMMAND
for SYSTEM speci�cation.

� FORTRAN intrinsic function system unavailable at compile time.

� User unaware that SYSTEM action occurs four or more times per
iteration.

ADPAC08 Boundary Data File Speci�cations - TRAF 233

TRAF

TRAF2D/3D Type Non-Contiguous Mesh Block
Interface Patching Scheme

Mesh Block #2
(51x11x51)

i
k j

Non−Contiguous Mesh Block Interface Along
Wake Cut Line Requires a TRAF Specification
(illustrated in Boundary Data File Format
statements below)

Mesh Block #1
(193x25x1)

Application

The TRAF speci�cation was developed speci�cally to treat C-type mesh
systems for airfoil cascades with a noncontiguous wake cut line such as
those developed using the TRAF2D/TRAF3D [16]
ow solver. The exam-
ple graphic above illustrates a two-dimensional mesh system used to predict
the
ow through a turbine vane passage. This mesh was generated using

234 TRAF - ADPAC08 Boundary Data File Speci�cations

the JERRYC/TOMC mesh generation package which was developed for the
TRAF2D/TRAF3D
ow solver. The C-type mesh utilizes a noncontiguous
wake cut line as shown in the trailing edge detail. The TRAF speci�cation
is applied along either side of the wake cut line to permit communication of

ow variables across the noncontiguous mesh interface.

Boundary Data File Format

The boundary data �le speci�cations for the mesh interface indicated in the
illustrative graphic for the TRAF boundary condition are given below:

TRAF 1 1 J J P P L L 1 1 1 33 1 2 177 193 1 2

TRAF 1 1 J J P P L L 1 1 177 193 1 2 1 33 1 2

Note that a complete TRAF speci�cation generally requires two TRAF
statement lines in the boundary data �le. In the example above, the �rst
speci�cation provides the interblock communication for one side of the C-grid
wake cut, while the second speci�cation provides the communication for the
other side of the C-grid wake cut. It is a common error to underspecify a
TRAF boundary by only providing a single line per interface.

Description

The TRAF boundary statement provides a means for block to block com-
munication for cases involving neighboring mesh boundaries which share a
common surface, but are non contiguous in one grid index. The standard ex-
ample of this type of mesh is a C-type mesh about an airfoil where the points
along the C-grid wake cut line are noncontiguous. This type of mesh sys-
tem has been utilized extensively in the TRAF2D/TRAF3D [16]
ow solver
system, and the TRAF boundary speci�cation has been provided to per-
mit ADPAC08 execution on these meshes. The implied restriction of the
TRAF boundary speci�cation is that the mesh is only misaligned in one
coordinate direction, speci�cally the i coordinate. It is also assumed that
the endpoints of the TRAF boundary speci�cation are contiguous. As such,
the TRAF boundary speci�cation is fairly restrictive, and should not be

ADPAC08 Boundary Data File Speci�cations - TRAF 235

used as a general purpose misaligned mesh routine. An example of an ap-
propriate application of the TRAF speci�cation is given in the illustrative
graphic. The TRAF boundary speci�cation is valid for either 2-D or 3-D
mesh blocks. For 2-D mesh blocks, the TRAF speci�cation must be applied
to a j=constant boundary. For 3-D mesh blocks, the TRAF speci�cation
must be applied to a k=constant boundary. The TRAF boundary condition
requires no additional data beyond the initial speci�cation line, but does re-
quire some extra care when used. The primary precaution is that the TRAF
procedure is based entirely on a simpli�ed interpolations scheme, and hence,
does not maintain either global or local conservation of
ow variables across
the mesh interface.

Restrictions/Limitations

The TRAF boundary speci�cation is restricted to mesh interfaces which
lie on a common surface (no signi�cant overlap). The TRAF procedure
permits only that the i coordinates between adjacent mesh surfaces are mis-
aligned. The TRAF procedure is only valid if the misaligned i coordinates
either increase or decrease in the x direction monotonically. The endpoints
of the TRAF speci�cation surface must ne contiguous. The TRAF speci�-
cation may only be applied to j=constant surfaces for 2-D mesh blocks, and
k=constant surfaces for 3-D mesh blocks.

Common Errors

� Failure to provide 2 TRAF statements for each interface.

� Incorrectly speci�ed or misaligned extents of boundary regions (values
ofM1LIM1, M1LIM2, N1LIM1, N1LIM2, M2LIM1, M2LIM2,
N2LIM1, N2LIM2 do not correctly de�ne the interface extents on
blocks LBLOCK1 and LBLOCK2).

� Attempt to use TRAF for a boundary which has 2 misaligned coordi-
nates.

236 TRAF - ADPAC08 Boundary Data File Speci�cations

� Attempt to use TRAF for boundaries which are not monotonic in the
x direction.

� Application of TRAF to mesh interfaces which do not have contiguous
end points.

� Application of TRAF to an i=constant or k=constant mesh surface
in a 2-D block.

� Application of TRAF to an i=constant or j=constant mesh surface in
a 3-D block.

ADPAC08 Mesh File Description 237

3.8 Mesh File Description

The ADPAC08 case.mesh �le is a data �le containing the x; y; z grid coordi-
nates of the multiple mesh blocks which are read in to de�ne the physical grid
points used in the time-marching solution (see Section 3.5 for a description of
the case name and the mesh �le naming convention). The mesh coordinates
are speci�ed in a Cartesian frame of reference, as shown in Figure 3.10, al-
though the ADPAC08 program may ultimately convert these coordinates to
a cylindrical coordinate system during execution. The mesh coordinates are
stored in what is known as PLOT3D multiple grid format, and are formatted
using the Scienti�c Database Library (SDBLIB). (The SDBLIB system al-
lows machine-independent binary �le storage.) The case.mesh �le must be
available for every ADPAC08 run. At the beginning of program execution,
the ADPAC08 program attempts to open the mesh �le and read in the mesh
size to make sure that enough memory has been allocated for the given prob-
lem. If the mesh �le is not found, or if the mesh is too large, the appropriate
error message is issued, and the program will terminate.

Mesh coordinates are assumed to be nondimensional numbers. The AD-
PAC08 employs a dimensional scaling factor (see input �le variable DIAM)
to convert the nondimensional mesh coordinates into dimensional coordi-
nates with units of feet. If the mesh is generated with units of feet, then
the dimensionalizing factor is simply 1.0. Proper nondimensionalization and
speci�cation of the dimensionalizing factor DIAM is required in order to
accurately achieve the desired
ow Reynolds number and rotational speed
(see the discussion of input variable ADVR is Section 3.6). It is also re-
quired that the ordering of the mesh points form a \left-handed" mesh. This
implies that at every point in the mesh, the vectors representing the posi-
tive i, j, and k coordinate directions form a left-handed coordinate system
(see Figure 3.11). Consider the case of a sheared H-grid discretizing a single
blade passage of a compressor (this type of mesh is used extensively in the
Standard Con�gurations described in Chapter 5). If we assume that looking
downstream through the blade passage is essentially the positive i direction,
and that the radial direction from hub to tip is essentially the positive j
direction, a left-handed mesh would require that the positive k direction be
from right to left in this orientation.

238 ADPAC08 Mesh File Description

Cartesian Coordinate
Reference

Cylindrical Coordinate
Reference

ADPAC Coordinate System Reference

DuctedFan

x

y

z

z

0
r

Fan
Axis

@@@@@
@@@@@
@@@@@
@@@@@
@@@@@
@@@@@
@@@@@

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@
@@@@@@@@@@

@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@
@@@@@@@

Figure 3.10: ADPAC08 Mesh Coordinate Reference Description

ADPAC08 Mesh File Description 239

ADPAC Left−Handed Coordinate Description

ik

All ADPAC Mesh Blocks Must Be
Based on a Left−Handed Indexing System

j

Left−Handed Mesh System

Right−Handed Mesh System

k

j i

Figure 3.11: ADPAC08 Left-Handed Coordinate System Description

240 ADPAC08 Mesh File Description

In order to understand the PLOT3D multiple-grid mesh �le format, and
the utilization of the SDBLIB routines, a comparison of the FORTRAN
coding for each method is given below for comparison.

The FORTRAN coding to read a PLOT3D unformatted multiple-block
mesh �le might be given as:

PLOT3D Mesh File Format FORTRAN Coding Example

OPEN(UNIT=IGRID,FILE=FNAME,FORM='UNFORMATTED',STATUS='OLD')

READ(IGRID) MG

READ(IGRID) (IL(L), JL(L), KL(L),L=1,MG)

DO 10 L = 1, MG

READ(IGRID) (((X(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((Y(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((Z(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L))

10 CONTINUE

Each of the terms used in the FORTRAN code given above are de�ned
below:

IGRID FORTRAN unit number for read statement

FNAME File name for mesh �le

MG number of grid blocks

IL(L) maximum i grid index for block L

JL(L) maximum j grid index for block L

KL(L) maximum k grid index for block L

X(I,J,K,L) Cartesian coordinate value of x for point (I,J,K) in
block L

Y(I,J,K,L) Cartesian coordinate value of y for point (I,J,K) in
block L

Z(I,J,K,L) Cartesian coordinate value of z for point (I,J,K) in
block L

ADPAC08 Mesh File Description 241

An example of the corresponding FORTRAN coding to read an AD-
PAC08 binary mesh �le using the Scienti�c Database Library (SDBLIB)
routines is given below:

PLOT3D Mesh File Format FORTRAN Coding Example Using SDBLIB

CALL QDOPEN(IGRID, FNAME, JE)

CALL QDGETI(IGRID, MG , JE)

DO L = 1, MG

CALL QDGETI(IGRID, IL(L), JE)

CALL QDGETI(IGRID, JL(L), JE)

CALL QDGETI(IGRID, KL(L), JE)

ENDDO

IPOINT = 1

DO 10 L = 1, MG

ILENGTH = IL(L) * JL(L) * KL(L)

CALL QDGEEA(IGRID, X(IPOINT), ILENGTH, JE)

CALL QDGEEA(IGRID, Y(IPOINT), ILENGTH, JE)

CALL QDGEEA(IGRID, Z(IPOINT), ILENGTH, JE)

IPOINT = IPOINT + ILENGTH

10 CONTINUE

CALL QDCLOS(IGRID, JE)

A listing of the additional terms used in the coding above is given below:

QDOPEN SDBLIB routine to open a �le for input or out-
put

QDGETI SDBLIB routine to get an integer

QDGEIA SDBLIB routine to get an integer array of length
ILENGTH

QDGETE SDBLIB routine to get a real number

QDGEEA SDBLIB routine to get a real array of length
ILENGTH

QDCLOS SDBLIB routine to close a �le

242 ADPAC08 Body Force File Description

IGRID FORTRAN logical unit number for grid input

JE An error trigger; 0 for no error, 1 if an error
occurs

IB Integer array containing the IL, JL, and KL
grid block sizes

ILENGTH Integer length of an array of data

IPOINT Integer pointer for block L to locate the initial
memory location for a block of data

The x; y; z coordinates are read in as a single-dimensioned array in the
SDBLIB format, and the ADPAC08 program includes a conversion routine
(source �le convas.f) which converts the single dimension array data to a
three-dimensional data array.

The mesh �le may be utilized directly with the PLOT3D program when
the default real number size of the compiled PLOT3D code is de�ned as
32 bits (as it is on many workstations). The corresponding PLOT3D read
command for an ADPAC08 mesh �le are:

PLOT3D PROMPT> read/mg/bin/x=case.mesh

Obviously the user should substitute their own case name in the PLOT3D
input line.

Unformatted mesh �les may be converted to ADPAC08 format using the
MAKEADGRID program described in Chapter 7.

3.9 Body Force File Description

The ADPAC08 body force �le is a data �le containing the blade blockage,
body force, and energy source terms used in a 2-D axisymmetric represen-
tation of an embedded blade row (see 2-D/3-D Solution Concepts, Section
2.3). Individual body force �les contain the cell-centered blade blockage,
body forces, and energy source terms for a speci�c mesh block. As a result,

ADPAC08 Body Force File Description 243

the �le naming procedure for the body force �le is somewhat di�erent than
the mesh, plot and restart �les, where a single �le contains all the data for a
multiple-block solution (a complete description of the ADPAC08 �le naming
procedure is given in Section 3.5).

The terms in the body force �le are stored in binary format, based on the
Scienti�c Database Library routines. (The SDBLIB system permits machine-
independent binary �le storage.) The blockage, body forces, and energy
sources are stored as nondimensional numbers using the nondimensionaliza-
tion strategy listed in Section 1.2 of the Final Report [1].

In order to understand the body force �le format, and the utilization of
the SDBLIB routines, a representative FORTRAN coding example to read
in a body force �le is given below for comparison.

Body Force File Format FORTRAN Coding Example Using SDBLIB

CALL QDOPEN(IBODY, FNAME, JE)

ILENGTH = 3

CALL QDGEIA(IBODY, IB, ILENGTH, JE)

IMX = IB(1)

JMX = IB(2)

KMX = IB(3)

ILENGTH = IMX * JMX * KMX

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGETE(IBODY, DUMMY, JE)

CALL QDGEEA(IBODY, BFR (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRU (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRV (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRW (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BFRE (IPOINT(L)), ILENGTH, JE)

CALL QDGEEA(IBODY, BL (IPOINT(L)), ILENGTH, JE)

CALL QDCLOS(IBODY, JE)

A listing of the FORTRAN variables and their meanings is given below:

244 ADPAC08 Body Force File Description

QDOPEN SDBLIB routine to open a �le for input or out-
put

QDGETI SDBLIB routine to get an integer

QDGETE SDBLIB routine to get a real number

QDGEIA SDBLIB routine to get an integer array of length
ILENGTH

QDGEEA SDBLIB routine to get a real array of length
ILENGTH

QDCLOS SDBLIB routine to close a �le

IBODY FORTRAN logical unit number for body force
�le input

JE An error trigger; 0 for no error, 1 if an error
occurs

IB Integer array containing the IL, JL, and KL
grid block sizes

IMX Mesh size+1 in the i coordinate direction

JMX Mesh size+1 in the j coordinate direction

KMX Mesh size+1 in the k coordinate direction

ILENGTH Integer length of an array of data

IPOINT(L) Integer pointer for block L to locate the initial
memory location for a block of data

BFR Body force for density (continuity equation)

BFRU Body force for axial momentum

BFRV Body force for radial momentum

BFRW Body force for circumferential momentum

BFRE Body force for internal energy

BL Blockage term

The body force data are read and written as a single-dimensioned array
in the SDBLIB format, and the ADPAC08 program includes a conversion
routine (source �le convas.f) which converts the three-dimensional array data

ADPAC08 Output File Description 245

to the single dimension array data.

3.10 Standard Output File Description

The ADPAC08 standard output �le case.output provides information re-
garding the status of a particular calculation during code execution. The sta-
tus information includes startup, code response to input �les (mesh, restart,
standard input, and boundary data), convergence history, error messages,
and output �le generation (plot �les, restart �les, body force �les). The in-
formation given in the standard output �le is essentially self explanatory, so
no further description is given here. A sample output �le is included in the
standard distribution of the ADPAC08 code for the test case described in
Appendix A. Additional details may be found in this Appendix.

3.11 Plot File Description

The ADPAC08 case.p3dabs and case.p3drel plot �les contain predicted ab-
solute and relative
ow data values, respectively, for each of the mesh points
in a multiple-block mesh ADPAC08 solution. The grid-centered aerodynamic
data is obtained by algebraically averaging the cell-centered data generated
by the �nite-volume solver during the time-marching process. As a result of
the averaging procedure, this data can occasionally appear inconsistent at
the corners of a mesh block, and should therefore only be used for graphi-
cal viewing, and not for post processing to obtain performance data, mass

ow rates, pressure rise, etc. The
ow plot data are speci�ed in a Cartesian
coordinate system (velocities are ux; uy; uz) to be consistent with the rep-
resentation of the mesh �le (see Section 3.8). The plot �les are written in
what is known as PLOT3D multiple grid binary format. The plot data are
formatted using the Scienti�c Database Library (SDBLIB). (The SDBLIB
system permits machine-independent binary �le storage.) The
ow data are
listed as nondimensional numbers using the nondimensionalization strategy
listed in Section 1.2 of the Final Report [1].

In order to understand the PLOT3D multiple-grid
ow �le format, and

246 ADPAC08 Plot File Description

the utilization of the SDBLIB routines, a comparison of the FORTRAN
coding for each method is given below for comparison.

The equivalent FORTRAN coding for an unformatted PLOT3D
ow �le
could be given as:

PLOT3D Flow File Format FORTRAN Coding Example

WRITE() MG

WRITE() (IL(L), JL(L), KL(L),L=1,MG)

DO 20 L = 1, MG

WRITE() EM(L), REY(L), ALF(L), TIME(L)

WRITE() (((R (I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RU(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RV(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RW(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L)),

. (((RE(I,J,K,L),I=1,IL(L)),J=1,JL(L)),K=1,KL(L))

20 CONTINUE

Each of the terms used in the FORTRAN code given above are de�ned
below:

MG number of grid blocks

IL(L) maximum i grid index for block L

JL(L) maximum j grid index for block L

KL(L) maximum k grid index for block L

X(I,J,K,L) Cartesian coordinate value of x for point (I,J,K) in
block L

Y(I,J,K,L) Cartesian coordinate value of y for point (I,J,K) in
block L

Z(I,J,K,L) Cartesian coordinate value of z for point (I,J,K) in
block L

EM(L) PLOT3D Reference Mach number for block L

REY(L) PLOT3D Reference Reynolds number for block L

ALF(L) PLOT3D Reference angle for block L

ADPAC08 Plot File Description 247

TIME(L) PLOT3D Reference time for block L

R (I,J,K,L) � at point (I,J,K) in block L

RU(I,J,K,L) �ux at point (I,J,K) in block L

RV(I,J,K,L) �uy at point (I,J,K) in block L

RW(I,J,K,L) �uz at point (I,J,K) in block L

RE(I,J,K,L) �e at point (I,J,K) in block L

PLOT3D Flow File Format FORTRAN Coding Example Using SDBLIB

CALL QDOPEN(IFLOW, FNAME, JE)

CALL QDGETI(IFLOW, MG , JE)

DO L = 1, MG

CALL QDGETI(IFLOW, IL(L), JE)

CALL QDGETI(IFLOW, JL(L), JE)

CALL QDGETI(IFLOW, KL(L), JE)

ENDDO

IPOINT = 1

DO 20 L = 1, MG

ILENGTH = IL(L) * JL(L) * KL(L)

CALL QDGETE(IFLOW, EM(L) , JE)

CALL QDGETE(IFLOW, REY(L) , JE)

CALL QDGETE(IFLOW, ALF(L) , JE)

CALL QDGETE(IFLOW, TIME(L), JE)

CALL QDGEEA(IFLOW, R (IPOINT), ILENGTH, JE)

CALL QDGEEA(IFLOW, RU(IPOINT), ILENGTH, JE)

CALL QDGEEA(IFLOW, RV(IPOINT), ILENGTH, JE)

CALL QDGEEA(IFLOW, RW(IPOINT), ILENGTH, JE)

CALL QDGEEA(IFLOW, RE(IPOINT), ILENGTH, JE)

IPOINT = IPOINT + ILENGTH

20 CONTINUE

CALL QDCLOS(IFLOW, JE)

A listing of the additional terms used in the coding above is given below:

248 ADPAC08 Plot File Description

QDOPEN SDBLIB routine to open a �le for input or out-
put

QDGETI SDBLIB routine to get an integer

QDGEIA SDBLIB routine to get an integer array of length
ILENGTH

QDGETE SDBLIB routine to get a real number

QDGEEA SDBLIB routine to get a real array of length
ILENGTH

QDCLOS SDBLIB routine to close a �le

IFLOW FORTRAN logical unit number for
ow input

JE An error trigger; 0 for no error, 1 if an error
occurs

IB Integer array containing the IL, JL, and KL
grid block sizes

ILENGTH Integer length of an array of data

IPOINT Integer pointer for block L to locate the initial
memory location for a block of data

The
ow data are written as a single-dimensioned array in the SDBLIB
format, and the ADPAC08 program includes a conversion routine (source
�le convas.f) which converts the three-dimensional array data to the single
dimension array data.

The plot �les may be utilized directly with the PLOT3D program when
the default real number size of the compiled PLOT3D code is de�ned as
32 bits (as it is on many workstations). The corresponding PLOT3D read
commands for an ADPAC08 mesh and
ow �le are:

PLOT3D PROMPT> read/mg/bin/x=case.mesh/q=case.p3dabs

Obviously the user should substitute their own case name in the PLOT3D
input line.

ADPAC08 Restart File Description 249

3.12 Restart File Description

The ADPAC08 restart �le is a data �le containing the cell-centered
ow vari-
ables generated during an ADPAC08 solution. This �le is intended to permit
continued execution of the code from the point at which a previous calcula-
tion was terminated. This feature permits breaking large jobs into smaller
computational pieces. This process of job restarting is considered a good
practice to avoid loss of data due to computer malfunctions and job quota
limitations. At the end of a given job, whether the calculation is a restart
run or not, the ADPAC08 program will attempt to write out the current cell
centered data to the �le case.restart.new (see Section 3.2 for a description of
the �le naming convention). The restart �le may then be used to continue the
calculation at this same point by simply renaming the �le case.restart.new to
case.restart.old, setting the input trigger appropriately (see the description
of FREST in Section 3.6), and rerunning the code. The restart data are
written in either the cylindrical or Cartesian coordinate system depending
on the variable format used during execution of the ADPAC08 code for each
particular mesh block. Velocities are speci�ed as uz; ur; u�, and all
ow vari-
ables utilize the nondimensionalization strategy described in Section 1.2 of
the companion Final Report [1].

In order to demonstrate the format of the restart �le, a sample of the
FORTRAN coding utilizing the SDBLIB library required to read a restart
�le is given below.

ADPAC08 Restart Flow File Format FORTRAN Coding Example

CALL QDOPEN(IREST, FNAME, JE)

CALL QDGETI(IREST, MG , JE)

NLENGTH = 3 * MG

CALL QDGEIA(IREST, IB, NLENGTH, JE)

DO 10 N = 1, MG

IMX(N) = IB((N-1)*3+1)

JMX(N) = IB((N-1)*3+2)

KMX(N) = IB((N-1)*3+3)

LENGTH = IMX(N) * JMX(N) * KMX(N)

250 ADPAC08 Restart File Description

CALL QDGEEA(IREST, R (IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RU(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RV(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RW(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, RE(IJK(N)), LENGTH, JE)

CALL QDGEEA(IREST, P (IJK(N)), LENGTH, JE)

49 CONTINUE

NLENGTH = MG

CALL QDGEIA(IREST, NCYC , NLENGTH , JE)

CALL QDGEIA(IREST, DTHETA , NLENGTH , JE)

CALL QDGEIA(IREST, OMEGAL , NLENGTH , JE)

CALL QDGEIA(IREST, JE)

Each of the terms used in the FORTRAN code given above are de�ned
below:

MG number of grid blocks

IMX(L) maximum i grid index for block L

JMX(L) maximum j grid index for block L

KMX(L) maximum k grid index for block L

R (IJK(L)) � at point IJK(L) in block L

RU(IJK(L)) �ux at point IJK(L) in block L

RV(IJK(L)) �uy at point IJK(L) in block L

RW(IJK(L)) �uz at point IJK(L) in block L

RE(IJK(L)) �e at point IJK(L) in block L

P (IJK(L)) pressure at point IJK(L) in block L

QDOPEN SDBLIB routine to open a �le for input or output

QDGETI SDBLIB routine to get an integer

QDGEIA SDBLIB routine to get an integer array of length
ILENGTH

QDGEEA SDBLIB routine to get a real array of length ILENGTH

QDCLOS SDBLIB routine to close a �le

ADPAC08 Convergence File Description 251

IREST FORTRAN logical unit number for restart input

JE An error trigger; 0 for no error, 1 if an error occurs

IB Integer array containing the IMAX, JMAX, and KMAX
grid block sizes

ILENGTH Integer length of an array of data

IJK(L) Integer pointer for block L to locate the initial mem-
ory location for a block of data

The restart data are written as a single-dimensioned array in the SDBLIB
format, and the ADPAC08 program includes a conversion routine (source �le
convas.f) which converts the three-dimensional array data to single dimension
array data.

3.13 Convergence File Description

The ADPAC08 convergence history �le case.converge (see Section 3.5 for
a description of the ADPAC08 �le naming convention) is an ASCII data
�le which contains the residual convergence history of the time-marching
solution. The residual history is useful for determining whether the numerical
solution has converged su�ciently to permit interrogation of the numerical
results, or whether additional restarted calculations are required to obtain
an accurate solution. Typically, a solution is deemed converged when the
residuals have been reduced by three orders of magnitude or more. The data
in the case.converge �le are organized in the following format:

iteration log10(maximum) log10(root-mean square)

number (residual) (residual)

. . .

. . .

. . .

. . .

The residual R at any cell in the �nite volume solution is calculated as
the sum of the changes in the 5 conservation variables �, �u, �v, �w, and �e.

252 ADPAC08 Image File Description

The maximum residual is then de�ned as the maximum of all the residuals
over all the cells of all mesh blocks. The root-mean square residual is the
square root of the sum of the squares of all the cells for all mesh blocks. The
case.converge �le residual data are reported as the base 10 logarithm of the
actual residuals in order to quickly evaluate the convergence of the solution
(if the reported log10 maximum residual starts at -2.5 and ends up at -5.5, the
solution has converged three orders of magnitude). The case.converge �le is
formatted in columns to permit convenient plotting using any of a number of
x-y plotting programs (the FULLPLOT program described in Reference [3]
is one example).

3.14 Image File Description

The ADPAC08 graphics display system (see Chapter 9) has the capability
of saving a raster image of the local graphics screen to a �le at speci�c iter-
ation intervals using the Silicon Graphics image �le format. This feature is
included as a simple means of constructing
ow�eld animations. The input
variables dealing with this facility FGRAFIX, FGRAFINT, FIMGSAV,
FIMGINT are described in Section 3.6, and the image �le naming conven-
tion is described in Section 3.5. In short, image �les can be saved when the
graphics display system is running on a single Silicon Graphics workstation
or across a network between two Silicon Graphics workstations supporting
the IRIX Operating System Version 4.0.1 or above, and also supporting the
IRIX scrsave command. Image �les can be viewed after they have been saved
by issuing the command

ipaste case.img.#

Other IRIS-speci�c commands such as imgview, movie and others may also
be suitable for viewing image �les. Additional information on the IRIS image
format and the image manipulation commands are available in the Silicon
Graphics system documentation.

Troubleshooting an ADPAC08 Failure 253

3.15 Troubleshooting an ADPAC08 Failure

The ADPAC08 code contain a large number of error checking and handling
facilities to determine and report to the user when a problem in the cal-
culation occurs. Unfortunately, some problems simply cannot be detected
and it may occur that for a particular case the solution will diverge (un-
controlled increase in solution residual) or simply \blow up" as a result of
numerical di�culties or an invalid numerical operation (divide by zero for
example). These cases are notoriously frustrating for the user because the
cause is often di�cult to identify. The paragraphs below attempt to provide
a structured approach to rectifying numerical problems for an ADPAC08 run
based on the author's experience.

Step 1.) Carefully Check the ADPAC08 Input File for Errors

The ADPAC08 standard input �le controls the overall characteristics of
the computational process, and as such, plays a large role in determining
the behavior of a job. Typical parameters to check are to make sure that
the CFL variable is negative for steady state calculations, and positive for
time-accurate calculations, and to make sure that the absolute value is not
too large (5.0 is a typical magnitude). If the CFL value is greater than
the CFMAX variable, or generally if the magnitude of CFL is larger than
2.5, then residual smoothing must be activated (FRESID=1.0). Naturally,
the values for VIS2 and VIS4 should also be within the limits suggested
for those values. A common problem for rotating geometries is an incorrect
rotational speed, or simply the wrong sign on the rotational speed (rotating
the wrong way), so check the values of RPM and/or ADVR carefully. The
user can also selectively turn o� features such as the turbulence model (see
FTURBB) and/or multigrid (see FMULTI) to check on their in
uence
on the stability of the solution. Finally, the user should make sure that
the proper CASENAME is speci�ed in the input �le. Other problems are
discussed in the individual input �le variable descriptions in Section 3.6.

Step 2.) Carefully Check the ADPAC08 Boundary Data File for Errors

The ADPAC08 boundary data �le controls the application of boundary
conditions on the various mesh surfaces necessary to de�ne the
ow charac-

254 Troubleshooting an ADPAC08 Failure

teristics of an ADPAC08 run. Common errors in the boundary data �le in-
clude mismatched PATCH speci�cations, incorrectly specifying in
ow data
(particularly when INLETT is used), and incorrectly specifying rotational
speeds for solid surfaces using SSVI. If the solution will run for a few it-
erations, it may be helpful to get a PLOT3D output �le at this point and
examine the solution using PLOT3D or FAST. Check for obvious solution
features such as
ow going the right direction, contour lines matching at
PATCH boundaries (although contour lines may not match exactly at any
mesh corner), and obvious radical changes in
ow variables (total pressures
and/or total temperatures which are very large or negative). The user can
often trace a faulty boundary condition by selectively commenting several
speci�cations from the boundary data �le and rerunning to see if the same
problem occurs. If the solution diverges even when no boundary conditions
are speci�ed, then a problem exists in the mesh or input �le. Other boundary
condition speci�c common errors are discussed in the individual boundary
data �le variable descriptions in Section 3.7.

Step 3.) Carefully Check the ADPAC08 Mesh File for Errors

Most common problems encountered when the ADPAC08 code does not
perform adequately can be traced to poor mesh quality. Although the mesh
may be free from obvious
aws such as crossed mesh lines and/or zero vol-
umes, this does not guarantee that numerical di�culties will be avoided. The
most common overlooked features of mesh quality are the mesh expansion
ratio and the mesh shear angle. Mesh expansion ratio relates to the change
in physical mesh spacing along a given coordinate direction from one point
to another. For stability, the maximum mesh expansion ratio at any point
should not exceed 1.3. The ADPAC08 provides a listing of maximum mesh
expansion ratios for each grid block and issues a warning if the mesh expan-
sion ratio exceeds 1.3. The code can tolerate larger ratios in many cases,
but de�nite problems can be expected if the maximum expansion ratio gets
larger than 2.0. Mesh shear can also cause problems. The more orthogonal
the mesh, the less likely mesh-induced numerical di�culties will occur. An-
other potential mesh problem involves mesh cells with very small radii (such
as along a sting upstream of a propeller, etc.) which may require increasing
the diameter of the sting to prevent problems. Application of the multigrid
iteration strategy and reducing the value of EPSY in the input �le have

Troubleshooting an ADPAC08 Failure 255

been found to be e�ective remedies for such problems.

Step 4.) Check for the Possibility of an Invalid Flow Condition

The author's experience has been that many users feel if a problem can be
de�ned then it should possess a solution. In
uid dynamics this is certainly
not true. If a solution is attempted for a fan rotor, for example, at a pressure
ratio which is beyond the stall point for that rotor, then no solution exists
and the code will very likely diverge without explanation. In many cases,
the numerical equivalent of an invalid
ow condition is that the solution will
either not converge, or will simply diverge. Another common example is
attempting to extract a steady state solution for a problem which is truly
time-dependent. Blunt body
ows often result in a time-dependent solution
due to vortex shedding, and the steady state analysis of this
ow will likely
never converge. This behavior also occurs frequently when a strong adverse
pressure gradient or
ow separation is present in the solution. Now it is
true that in some cases, the level of convergence may also be limited by
such factors as mesh quality, numerical accuracy, and/or turbulence model
limit cycles, and it is di�cult to determine whether the cause is numerical
or physical. This is unfortunately a matter of experience and the user is
encouraged to question whether their case can truly have a \steady" solution.

Step 5.) Determine if the Problem is Computer Dependent

The ADPAC08 code was developed and tested on UNIX-based operat-
ing systems using FORTRAN 77 standard coding techniques. In spite of the
standardization in the computer industry, not all machines produce the same
answer for a given problem due to compiler optimizations and code handling
features. It has been the author's experience that compilers are often a source
of problems, particularly when the code has been compiled for the �rst time
on a speci�c architecture, or when a new release of the operating system
or FORTRAN compiler has been installed. Before reporting an unsolvable
problem, it is a good practice to completely recompile the code on a known
stable machine with a well tested version of FORTRAN without using op-
timization (the user may be required to modify the ADPAC08 Make�le to
do this). If the code displays the same error, then it is possible that a bug
has been uncovered and this should be reported so future versions do not
encounter the same problem.

256 Troubleshooting an ADPAC08 Failure

Step 6.) Determine the e�ect of key input variables

Some \�ne-tuning" of input variables is occasionally required to obtain a
converged solution, or to prevent an instability from forming. The following
suggestions may be useful to aid in establishing the sensitivity of the solution
to various inputs:

6.1 Try to run the problem without any boundary conditions. This is essen-
tially a uniform
ow test. If the code diverges, then the problem is either
in the input �le or the mesh.

6.2 Vary the parameter CFMAX. Lower values imply more smoothing. It is
possible to have too much smoothing, so both larger and smaller values
should be tested.

6.3 Make sure FRESID is set to 1.0 if the magnitude of CFL is larger than
2.0.

6.4 Examine and vary the values of VIS2 and VIS4.

6.5 Turn o� all multigrid (FMULTI, FFULMG = 0.0).

6.6 Turn o� the turbulence model FTURBB = 999999999.0. If the problem
still exists, try to run inviscid
ow (FINVVI = 0.0).

6.7 Clear the input �le and boundary data �le of all speci�cations (except
the case name, which must be activated). Now, if the code diverges, there
is almost certainly a problem with the grid. Examine the code output to
determine where the maximum error occurs, and carefully check the grid
in this region.

Step 7.) Report the Problem

In the event that no other cause of the problem can be detected, the
problem should be reported to NASA. The recommended contact is:

Dr. Chris Miller

Mail Stop 77-6

NASA-Lewis Research Center

21000 Brookpark Road

Troubleshooting an ADPAC08 Failure 257

Cleveland, OH 44135

(216) 433-6179

cmiller@lerc.nasa.gov

The author is also interested in keeping up with known problems and
may be reached at:

Dr. Ed Hall

Speed Code T-14A

Allison Engine Company

Indianapolis, IN 46206-0420

(317) 230-3722

ehall@nas.nasa.gov

ieeh1@agt.gmeds.com

258 Troubleshooting an ADPAC08 Failure

Chapter 4

RUNNING ADPAC08 IN
PARALLEL

4.1 Parallel Solution Sequence

In order to run ADPAC08 in parallel, ADPAC08 must be compiled for par-
allel execution. The chapter on code compilation in this User's Manual de-
scribes the proper compilation procedure.

ADPAC08 is parallelized using the Application Portable Parallel Library
(APPL) message passing library, developed at NASA Lewis. Reference [18]
explains how to write code using APPL and how to run codes written with
APPL. While APPL runs on many platforms, this manual will deal with
only two of them: workstation clusters and nCUBE massively parallel com-
puters. These two platforms are representative of how ADPAC08 runs in
parallel. The APPL document should be consulted for cases not covered in
this manual.

Regardless of the platform, running ADPAC08 in parallel requires the
APPL compute function and a procdef �le. Codes running under APPL are
not initiated by typing the executable name, but use the APPL compute
function instead. The syntax for executing ADPAC08 is as follows:

compute < casename.input > output

The compute function controls the execution of ADPAC08 on the vari-

259

260 Running ADPAC08 in Parallel

ous processors, taking additional input from the procdef �le. The procdef �le
contains the names of the executable images and the processors that they are
to be loaded on. The compute function establishes communications with
each processor speci�ed in the procdef �le, loads the ADPAC08 executable
image, and initiates the run on each processor. Also, the compute func-
tion oversees the running processes, monitoring the processors for abnormal
terminations. If a communications error is trapped, or if a process has died
unexpectedly, the compute function shuts down all of the remaining pro-
cesses gracefully. This feature is most important on workstation clusters,
which have no built-in mechanism for monitoring parallel jobs.

The normal ADPAC08 input �le is redirected from standard input to the
compute function. The redirected input is available to all of the processes
(although ADPAC08 currently does all reading from node 0). The output
�le may be redirected, or allowed to stream to the terminal, just as in serial.

The procdef �le should appear in the directory where the job is being
run. It has a di�erent syntax for the various parallel platforms. The simplest
formulation is for hypercube machines (nCUBE and Intel). A sample procdef
�le for an nCUBE 2 is as follows:

someuser frntend . ./adpacp.ncube -1 32

The �rst token in the procdef �le is the user name (someuser). The
second token is the name of the front-end processor to the nCUBE 2. The
third token is the path to the directory for input and output �les (in this case,
the current directory, \." is used). The fourth token is the executable name
(the path may be speci�ed to be sure the correct executable is used). The
�fth token speci�es how the processors are mapped (-1 indicates hypercube
ordering, -2 indicates mapping into a ring). Hypercube ordering is generally
preferred. The last token speci�es the number of processors to be allocated
(32 in this case).

Similarly, a sample procdef �le for a workstation cluster is as follows:

someuser host1 . 1 adpacp.aix

someuser host2 . 1 adpacp.aix

someuser host3 . 2 adpacp.aix adpacp.aix

Running ADPAC08 in Parallel 261

In this example, the �rst three tokens represent the user name, host name
and the path to the working directory, just as before. The fourth token
indicates the number of processes to be run on the host, and the remaining
tokens are the executable images corresponding to the processes. The last
line of the example shows 2 processes running on host3. Using this procdef
�le, the virtual parallel computer will consist of four processes running on
three workstations.

The host machines in a workstation cluster must be connected by eth-
ernet, but do not have to share disks, or be part of the same subnet. This
provides tremendous
exibility in constructing a workstation cluster. How-
ever, most performance bottlenecks encountered on workstation clusters in-
volve the network. The bene�ts of adding processors may be o�set by poor
network performance. The tradeo� varies with the problem and with the
hardware con�guration.

In general, the behavior of ADPAC08 in parallel is the same as in serial.
This is especially true if there are no input errors. The output �les may
be di�erent if there are input errors. There are two general types of input
errors detected in ADPAC08 . Errors involving the grid or the input �le will
generally be detected by all processors, and the error messages will appear
as they do in serial.

If, however an error is discovered in a boundary condition routine, the
output messages will probably appear di�erently in the output �le, and may
not appear at all. Since ADPAC08 boundary conditions are applied in
parallel, node 0 does not execute all of them, but only those involving a
block assigned to node 0. If node 0 does not encounter the error, then a
di�erent node writes the error message. Since the writing node is out of sync
with node 0, the error message may be written to a di�erent place in the
output �le than if node 0 had written it.

Bu�ering of output on the various processors can also cause a problem.
Usually, after an error message is printed, execution is stopped on all pro-
cessors. If execution is stopped before the bu�er is
ushed, then output may
be lost from some processors. The result is that an error message could be
caught in the bu�er and never appear in the output �le. If ADPAC08 termi-
nates for no apparent reason, this may explain the problem. The solution is
to rerun the job without redirecting the output. If output is not redirected,

262 Running ADPAC08 in Parallel

it is normally not bu�ered, and all of the output will appear.

It is also possible to get multiple copies of an error message if more than
one processor encounters the error. Wherever possible, ADPAC08 has been
coded to avoid these problems, but these unfortunate possibilities still exist.
Therefore, running ADPAC08 interactively is the best way to track down
input problems.

Aside from these considerations, running ADPAC08 in parallel is very
much like running ADPAC08 in serial. The input �les are identical, and
the output �les are very similar. The most common problems in running
ADPAC08 in parallel are failing to use the compute function, improperly
specifying the parallel con�guration in the procdef �le, and attempting to
run a serial executable in parallel.

4.2 SIXPAC (Block Subdivision) Program

SIXPAC , which stands for Subdivision and Information eXchange forParallel
Adpac Calculations, enables the user to rede�ne the block structure of an
ADPAC08 job. Using SIXPAC , large grid blocks can be subdivided to im-
prove load balance, or to make use of smaller memory processors in parallel
calculations. SIXPAC generates new input, mesh, restart, and boundata
�les for the subdivided problem, creating new blocks according to user spec-
i�cations. The resulting �les represent a problem equivalent to the original,
but with more, smaller, blocks. Although the number of unique grid points
is unchanged, the total number of points is larger because of duplication at
interfaces.

The motivation for SIXPAC comes from the way ADPAC08 was par-
allelized. Rather than parallelize the interior point solver, ADPAC08 was
parallelized through the boundary conditions. An individual block can't
be run across multiple processors; each processor must contain only whole
blocks. This implies that a problem with a single large block couldn't be run
in parallel. SIXPAC enables large blocks to be recast as groups of smaller
blocks, so that they can be run in parallel. SIXPAC is not required to run a
problem in parallel, but it simpli�es the process of setting up a problem for
optimal parallel performance.

Running ADPAC08 in Parallel 263

4.2.1 SIXPAC Input

The input �les required by SIXPAC are the casename.input �le, the case-
name.mesh �le, the casename.boundata �le, and the casename.sixpac �le. If
a new restart �le is to be created, then a casename.restart.old �le is also
required. Of this group, only the casename.sixpac �le is di�erent from the
standard ADPAC08 input.

The casename.sixpac �le contains information which speci�es how the
blocks are to be subdivided. The required information includes the number
of original blocks, and how each block is to be subdivided in each indicial
direction (i, j, and k). In each direction, the number of subdivided blocks, and
possibly the locations of the subdivisions, must be speci�ed. If the number
of subdivided blocks in a particular coordinate direction is set to 1, then the
block is not divided in that coordinate direction.

By default, blocks are split into the speci�ed number of equal sized pieces.
If there is a remainder, it is spread over the processors to create nearly equal
sized pieces. If unequal divisions are required in a particular direction, then
the location of each division must be speci�ed in that direction.

Unequal divisions are often employed to preserve levels of multigrid, or to
put the edge of a geometric feature on a block boundary. Figure 4.1 illustrates
how di�erent block strategies a�ect multigrid.If, for example, there are 21
points in the I direction of a block, 3 levels of multigrid are possible. If this
block is divided into two equal pieces of 11 points each, then only 2 levels
of multigrid are possible. However, if the block is split into a block with 13
points and a block with 9 points, 3 levels of multigrid are still possible.

4.2.2 casename.sixpac File Contents

For equal divisions of the blocks in each direction, the casename.sixpac is
simple to construct. The �rst line is a comment, and the second line contains
the number of blocks in the original problem. Input is free format. The third
line is a comment, and there is an additional line for each original block, in
ascending order. These lines contain the block number, and the number of
subdivided blocks in each coordinate direction. The following is a sample
casename.sixpac �le:

264 Running ADPAC08 in Parallel

Subdivision of Blocks to Preserve Levels of Multigrid

1 11 21

1 2113

Subdivision into two equal pieces results in blocks with 11 points. Only two
levels of multigrid are possible, even though three levels were possible for
the original block.

Subdivision into two unequal blocks, one with 13 points and one with 9
points, yields a grid capable of three levels of multigrid, like the original
block.

1 11 1 11

1 13 1 9

Figure 4.1: Careful block division can preserve levels of multigrid.

Running ADPAC08 in Parallel 265

Number of blocks

2

n idiv jdiv kdiv

1 4 2 1

2 4 2 1

In this example, there are two original blocks. The �rst block is to be
divided into 4 pieces along the I coordinatem, 2 pieces along the J coordinate,
and 1 piece along the K coordinate. The second block is to be divided into 4
pieces along the I coordinatem, 2 pieces along the J coordinate, and 1 piece
along the K coordinate. This means that there will be a total of 16 new
blocks generated from the original 2 blocks.

If, however, user-speci�ed divisions are required in a direction, the case-
name.sixpac �le must be modi�ed as follows:

� The number of subdivided blocks in the direction to be speci�ed is set
to 0. This tells SIXPAC that user speci�cations are to follow.

� New lines are added to the casename.sixpac immediately following the
block to be modi�ed. First, a comment line is added, which normally
identi�es which direction is being speci�ed. Second, a line containing
the number of subdivided blocks is speci�ed (either nblki, nblkj, or
nblkk, depending on the direction) Third, a comment line is added,
which normally indicates that the following line contains block division
points. Fourth, lines are added containing the division positions for the
new blocks. There should be nblki, nblkj, or nblkk of these entries, as
speci�ed above, in free-format.

� The block division positions are the upper limits of the new blocks in
terms of the original block indices. The last division should be the
block size in that direction.

� Block division positions must be speci�ed in ascending order.

� If user-speci�ed subdivisions are required in more than one direction of
a single block, then the additions are made in \natural order," that is
I �rst, then J and K, as required.

266 Running ADPAC08 in Parallel

� All blocks must appear in the casename.sixpac �le in ascending order.

SIXPAC has some sanity checks built in to warn users of problems in the
casename.sixpac �le. A sample casename.sixpac �le appears below.

Number of blocks

2

n idiv jdiv kdiv

1 4 0 1

number of J divides

2

J break points

3 10

2 4 2 1

As before, there are two original blocks. The �rst is to have 4 I divisions,
2 J divisions and 1 K division. The J divisions are to be at J=3 and J=10
in block 1. The second block is to have 4 I divisions 2 J division and 1 K
division. This means that there will be a total of 16 new blocks generated
from the original 2 blocks.

4.2.3 Restart Files in SIXPAC

If a restart �le is to be created for the subdivided problem, the input trigger
FREST must be set equal to 1.00 in the casename.input �le. This tells
SIXPAC to look for a casename.restart.old �le, and to subdivide it. A
Ncasename.restart.old �le is written, and the new input �le will be set up to
run with the new restart �le.

4.2.4 SIXPAC Output

The output �les produced by SIXPAC are the Ncasename.input �le, the
Ncasename.mesh �le, the Ncasename.boundata �le, and the Ncasename.bacpac
�le. An Ncasename.restart.old �le is also created if required. The casename
has been prepended by an \N" to avoid confusion with the original input

Running ADPAC08 in Parallel 267

�les. The new output �les are themselves ADPAC08 input �les and can be
run in either serial or parallel versions of ADPAC08 .

The Ncasename.bacpac �le is not required to run ADPAC08 , but is used
by the code BACPAC , which reassembles the blocks into their original,
undivided structure. The Ncasename.bacpac �le contains information about
the way SIXPAC subdivided the blocks. There is normally no reason for the
user to alter the Ncasename.bacpac �le. The form of the Ncasename.bacpac is
described in the section of the User's Manual dealing with BACPAC input.

4.2.5 Running SIXPAC

Running SIXPAC is very much like running ADPAC08 . The command
syntax is:

sixpac < casename.input > output

The output �le is similar to an ADPAC08 output �le, because the routines
to read the grid, the input �le and the boundary data �le are taken directly
from ADPAC08 . One addition to the output �le is a table of the new grid
blocks and their sizes. After verifying the new block structure created by
SIXPAC , the output �le can be discarded.

4.3 BACPAC

BACPAC , which stands for Block Accumulation and Consolidation for
Parallel Adpac Calculations, reassembles subdivided ADPAC08 �les into
their original, undivided form. It is used in conjunction with SIXPAC ,
and performs essentially the inverse operation of SIXPAC . BACPAC can
reconstruct mesh, PLOT3D, or restart �les, producing new �les which are
equivalent to what would have been produced had the problem been run with
the original, undivided blocks. Using SIXPAC and BACPAC , a problem
can be subdivided and reconstructed any number of ways to take advantage
of available computer resources.

268 Running ADPAC08 in Parallel

4.3.1 BACPAC Input

BACPAC queries the user for needed information, and reads from standard
input (normally the keyboard). The user is �rst prompted for the casename.
The user then selects which �les are to be reconstructed by entering appro-
priate responses to questions about each �le. Due to the potential size of
these �les, they are not created by default.

BACPAC expects to �nd a casename.bacpac �le which contains in-
formation detailing how the original problem was subdivided. The case-
name.bacpac �le is created automatically by SIXPAC , and requires no mod-
i�cations by the user. However, if SIXPAC was not used to create the
subdivided blocks, the user must construct a casename.bacpac �le in order to
run BACPAC . A sample casename.bacpac �le resulting from the �rst sample
SIXPAC input �le given previously appears below.

2 original number of blocks

imax jmax kmax

73 10 9

nblki nblkj nblkk

4 2 1

oldblk newblk global i global j global k local im local jm local k

73 10 9

nblki nblkj nblkk

4 2 1

oldblk newblk global i global j global k local im local jm local k

In the above example, two blocks are subdivided into eight new blocks each
(a total of 16 blocks). The dimensions of the original blocks are 73x10x9,
and there are 4, 2, and 1 subdivided blocks in each coordinate direction for
each block. The table underneath each of the original block size declarations
shows the original block number, and the new block number. The global i,
j, and k indices are the position of the bottom right hand corner of the new
block in the original block. For example, the point (1,1,1) in the new block
8 is the same as the point (17,9,9) in the original block 1. The local im, jm,
and km indices are the block size of the new block. This data essentially
maps the new blocks into the original block structure.

Running ADPAC08 in Parallel 269

4.3.2 BACPAC Output

The output �les produced by BACPAC are the Ncasename.mesh.bac �le, the
Ncasename.p3dabs.bac and the Ncasename.p3drel.bac �les, and the Ncase-
name.restart.bac �le. The .bac su�x is used to avoid confusion with existing
�les. Generally the Ncasename.mesh.bac need not be created because it is
identical to the original casename.mesh �le.

4.4 Parallel ADPAC08 Block/Processor Assign-

ment

Load balancing is a critical issue for parallel computing tasks. While it is
beyond the scope of this program to perform detailed load balancing analyses
for every parallel computing platform tested, it seems reasonable to provide
some form of control in order to distribute computational tasks e�ciently
across a parallel computing network. In the parallel ADPAC08 code, this is
best accomplished through manipulation of the block/processor distribution
scheme. By default, the parallel operation of the ADPAC08 code provides an
automatic block to processor assignment by dividing up the blocks as evenly
as possible, and, to the greatest degree possible, assigning sequential block
numbers on a given processor. For example, if 8 blocks were divided between
3 processors, blocks 1, 2, and 3 would be assigned to process #0, blocks 4,
5, and 6 to processor #1, and blocks 7, and 8 to processor #2 (note that
the processor numbering scheme is 0, 1, 2, etc.). This procedure is nearly
optimal when each block is the same size, and each processor has the same
computational power. Unfortunately, our experience is that block sizes and
computational resources often vary dramatically. In this regard, a system was
developed which permits the user to specify the block to processor assignment
through a special input �le (casename.blkproc). A sample casename.blkproc
�le is given below for an 8 block mesh distributed across 3 processors:

number of blocks

8

block # proc #

270 Running ADPAC08 in Parallel

1 0

2 1

3 1

4 1

5 1

6 2

7 2

8 2

In the case described by the above �le, block 1 is assigned to processor #0,
blocks 2, 3, 4, and 5 to processor #1, and blocks 6, 7, and 8 to processor
#2. This block assignment might be advisable for the case when block 1 is
signi�cantly larger in size than the other blocks, or if processor #0 has less
memory or a slower CPU than the remaining processors. The original block
assignment scheme is selected as the default when the casename.blkproc �le
is not present.

Chapter 5

ADPOST POST PROCESSOR
OPERATING
INSTRUCTIONS

5.1 Introduction to ADPOST

In this chapter, a brief description of the ADPOST post-processing rou-
tine used to calculate a number of integrated quantities presented in the
companion Final Report [1] is given. Early in the development of the AD-
PAC08 code, it was determined that the most e�ective way to handle output
data was to utilize a separate, e�cient data processing routine, to free the
ADPAC08 code from the expense and complexity of calculating speci�c case-
dependent output data. The wide variety of applications possible with the
multiple-block code simply prohibited embedding a number of output data
summaries in the aerodynamic analysis, and this prompted the development
of the ADPOST program. ADPOST is designed to handle a number of post
processing chores including mass-averaging and calculating radial distribu-
tions of
ow data. Many of the options in ADPOST are slanted towards
turbomachinery
ows, but the program may be used with equal e�ectiveness
on non-turbomachinery
ows.

271

272 ADPOST Post Processor Operating Instructions

5.2 Con�guring ADPOSTMaximumArray Di-

mensions

The maximum array dimensions of the ADPOST program are set in exactly
the same manner as the ADPAC08 program itself. All array size PARAM-
ETER statements are in the source �le parameter.inc included with the
ADPOST program. A sample parameter.inc �le would appear as:

parameter (nbmax = 6)

parameter (nra3d = 350000)

Here again, as in ADPAC08 , NBMAX is the maximum number of mesh
blocks permitted (6, in this case), and NRA3D is the maximum sum of all
cell centered elements required for the mesh (a formula for estimating this
value is given in Section 3.3). An error message is displayed whenever the
user attempts to read in a mesh which is larger than that permitted by either
NBMAX or NRA3D.

5.3 Compiling the ADPOST Program

In the directory containing the FORTRAN source of the ADPOST code,
compilation is performed by executing the command:

make option

The make command is standard on UNIX systems and automatically inter-
rogates the �le Make�le for instructions on how to perform the compilation.
The option argument may be any of the variables listed below:

No argument - same as link below.

link This is the standard UNIX system compilation. This option will deliver a
working executable on most UNIX systems which support standard naming
conventions (f77 as the standard compiler, etc.). The compilation includes
basic compiler optimization (f77 -O).

ADPOST Post Processor Operating Instructions 273

cray This option is utilized when compiling the ADPOST code on a Cray com-
puter.

aix This option is used when compiling the ADPOST code on an IBM RS-6000
workstation running the AIX operating system.

5.4 Running the ADPOST Program

Once the code has been compiled, change directories to the location where
the case of interest is stored. The ADPOST program is invoked by issuing
the command:

path/adpost

where path is the relative or absolute pathname of the directory containing
the ADPOST executable �le from the current local directory. For example,
if the mesh and
ow �les are in the directory

/usr/people/me/testcase

and the ADPOST executable is in the directory

/usr/people/me/adpac/src/adpost

then the commands

cd /usr/people/me/testcase

/usr/people/me/adpac/src/adpost/adpost

would begin the ADPOST program process.

Once the ADPOST program is invoked, the following message appears:

274 ADPOST Post Processor Operating Instructions

aaaa dddd ppppp ooooo sssss ttttt

a a d d p p o o s t

aaaaa d d ppppp o o ssssss t

a a d d p o o s t

a a dddd p ooooo ssssss t

Welcome to ADPOST, a post-processor for the

ADPAC code. All that is required to run this

routine is the original input file and the

corresponding mesh, and restart.old files.

You will first be prompted for the input

filename. It must contain the casename that

precedes the other files.

You will then be presented with several post

processing options from which you may choose.

Enter the Name of the Input File to be Post Processed.

(be sure to enter both the filename and its suffix)

The input �lename must now be entered and must contain the case name to
be post-processed. The original input �le, used with the ADPAC08 code is
recommended since it is in the expected format and contains the information

ADPOST Post Processor Operating Instructions 275

necessary for dimensionalizing
ow variables. Next the restart.old and mesh
data are read, after which the following menu appears:

Choose one of the following options to continue:

MAIN OPTION MENU

1. Specify a section to be averaged.

2. Dimensionalize flow values.

3. Print relative quantities instead of absolute.

4. Print spanwise information also.

5. Maintain thermodynamic consistency.

6. Plot flow variables.

7. Exiting Adpost.

Enter option number now.

276 ADPOST Post Processor Operating Instructions

Currently, only six options are available since the plot routines for option #6
have not yet been incorporated. A brief description of each of the other six
options follows:

1. Specify a section to be averaged.

Option #1 allows the user to specify the portion of the
ow �eld for which
the mass averaged quantities are to be calculated. This value can only be
speci�ed for constant i, j or k planes but need not include the entire
ow �eld
on these planes. If no other options are picked in conjunction with #1 then,
by default, the mass averaged values calculated for the speci�ed section are
in nondimensional form; the velocities and stagnation properties are absolute
values, and thermodynamic consistency is maintained in each grid cell but
not necessarily in the resulting mass averaged quantities. Other formations
are possible by choosing additional options in combination with #1. Only one
section of the
ow �eld can be mass averaged at a time, so if values are needed
in separate sections/blocks this option must be chosen repeatedly. Mass
averaged quantities calculated with ADPOST are; stagnation temperature
and pressure, static temperature and pressure, and velocity. A sample output
is shown below:

FLOW QUANTITIES FOR BLOCK #1

MASS AVERAGING OVER i = CONSTANT SLICES

GRID MASSFLOW TOTAL TOTAL STATIC STATIC

SLICE AREA RATE PRESSURE TEMPERATURE PRESSURE TEMPERATURE

1 0.1282E-01 0.2135E-02 0.1033E+01 0.1000E+01 0.9949E+00 0.9894E+00

2 0.1282E-01 0.2135E-02 0.1033E+01 0.1000E+01 0.9949E+00 0.9894E+00

3 0.1282E-01 0.2135E-02 0.1033E+01 0.1000E+01 0.9949E+00 0.9894E+00

ADPOST Post Processor Operating Instructions 277

4 0.1282E-01 0.2135E-02 0.1033E+01 0.1000E+01 0.9949E+00 0.9894E+00

etc.

If no section if speci�ed with option #1, then calculations for all other op-
tions, except #7, are performed on the entire
ow �eld.

2. Dimensionalize flow values.

Option #2 dimensionalizes mass averaged
ow values with the reference pres-
sure, temperature, and diameter found in the input �le. For a description of
how variables are dimensionalized, see Section 1.2 of the Final Report [1].

3. Print relative quantities instead of absolute.

Option #3 calculates the mass averaged velocity, total pressure and total
temperature relative to a rotating coordinate system (i.e., rotor).

4. Print spanwise information also.

Option #4 provides additional mass averaged values for each radial (span-
wise, j index) location in the speci�ed planes. Unless radial planes are speci-
�ed, then values at each axial location are given instead. The spanwise/axial
averages are printed �rst, followed by the values for the entire plane. A
sample output is shown below:

FLOW QUANTITIES FOR BLOCK #1

MASS AVERAGING OVER i = CONSTANT SLICES

278 ADPOST Post Processor Operating Instructions

spanwise integration for grid surface i = 1

j slice # percent span mass flow ptotal ttotal swirl angle

2 0.000 - 0.001 0.265201E-06 1.00322 1.00140 -71.9231

3 0.001 - 0.001 0.733345E-06 1.00299 1.00024 -60.4713

4 0.001 - 0.003 0.112133E-05 1.00344 0.999918 -57.8162

.

.

.

.

Mass Average Totals for i= 1 Plane

GRID MASSFLOW TOTAL TOTAL STATIC STATIC

SLICE AREA RATE PRESSURE TEMPERATURE PRESSURE TEMPERATURE

1 0.1282E-01 0.2135E-02 0.1033E+01 0.1000E+01 0.9949E+00 0.9894E+00

5. Maintain thermodynamic consistency.

Option #5 maintains thermodynamic consistency in the averaged
ow quan-
tities. This is accomplished by mass averaging only the cell centered conser-
vation variables. The resulting mass averaged velocity, density and energy
are then used with perfect gas relationships to calculate pressure and tem-
perature.

6. Plot flow variables.

This option is not currently available.

7. Exiting Adpost.

After each option has been chosen, the user is asked if they would like to
specify any additional options. If the response is \yes", then you are returned

ADPOST Post Processor Operating Instructions 279

to the main menu. If the response is \no" then calculations are performed
on the speci�ed section with the options chosen, after which you are again
returned to the main menu. The user may then either specify another section
or other options to be performed.

The entire main menu sequence is repeated until option #7 is picked and
the process is terminated. Calculated quantities are stored in a �le called
adpost.out.

5.5 Sample Session Using the ADPOST Pro-

gram

A sample interactive session from the ADPOST program is printed below
for the case of a ducted propfan H-grid with multiple blade rows (Standard
Con�guration #7). The mesh con�guration and mesh index reference are
described in the Appendix for the sample test case. All the user responses
are listed in boldface type during the interactive session listing.

Sample Interactive ADPOST Session Listing

aaaa dddd ppppp ooooo sssss ttttt

a a d d p p o o s t

aaaaa d d ppppp o o ssssss t

a a d d p o o s t

a a dddd p ooooo ssssss t

280 ADPOST Post Processor Operating Instructions

Welcome to ADPOST, a post-processor for the

ADPAC code. All that is required to run this

routine is the original input file and the

corresponding mesh, restart.old, p3dabs, and

p3drel files.

You will first be prompted for the input

filename. It must contain the casename that

precedes the other files.

Next, mass-average flow values are calculated

at each axial station.

Finally, the user is presented with several

other post processing options from which they

may choose.

Enter the Name of the Input File to be Post Processed.

(be sure to enter both the filename and its suffix)

nasa.input

Mass averaged values are now being

calculated for every 'i' plane.

ADPOST Post Processor Operating Instructions 281

Calculations have been written to 'adpost.out'.

Choose one of the following options to continue:

MAIN OPTION MENU

1. Specify another section to be averaged.

2. Dimensionalize flow values.

3. Print relative quantities instead of absolute.

4. Print spanwise information also.

5. Maintain thermodynamic consistency.

6. Plot flow variables.

7. Exit Adpost.

Enter option number now.

1

**

Option #1 allows you to specify the portion of

flow field to be averaged. This can be done on

any i, j or k plane and need not include the

282 ADPOST Post Processor Operating Instructions

the entire slice.

Enter the block number to be mass-averaged

or if you wish to return to the Main Menu,

enter a number greater than 4

1

In what direction are slices to be averaged?

(Enter i, j, or k)

i

Specify the section to be averaged

Enter the minimum i,j,k, indices of the first surface.

129 1 1

Enter the maximum i,j,k, indices of the last surface.

Maximum grid indices: 129, 17, 17

129 17 17

Enter the increment in the i direction.

ADPOST Post Processor Operating Instructions 283

1

Would you like to specify any additional

options? (yes/no)

yes

Choose one of the following options to continue:

MAIN OPTION MENU

1. Specify another section to be averaged.

2. Dimensionalize flow values.

3. Print relative quantities instead of absolute.

4. Print spanwise information also.

5. Maintain thermodynamic consistency.

6. Plot flow variables.

7. Exit Adpost.

Enter option number now.

5

284 ADPOST Post Processor Operating Instructions

Thermodynamic consistency will be preserved.

Would you like to specify any additional

options? (yes/no)

yes

Choose one of the following options to continue:

MAIN OPTION MENU

1. Specify another section to be averaged.

2. Dimensionalize flow values.

3. Print relative quantities instead of absolute.

4. Print spanwise information also.

5. Maintain thermodynamic consistency.

6. Plot flow variables.

7. Exit Adpost.

Enter option number now.

ADPOST Post Processor Operating Instructions 285

4

Spanwise print flag has been turned on.

Would you like to specify any additional

options? (yes/no)

no

Calculations for selected options are now being processed.

--

Calculations are complete and can be found in 'adpost.out'.

Choose one of the following options to continue:

MAIN OPTION MENU

1. Specify another section to be averaged.

286 ADPOST Post Processor Operating Instructions

2. Dimensionalize flow values.

3. Print relative quantities instead of absolute.

4. Print spanwise information also.

5. Maintain thermodynamic consistency.

6. Plot flow variables.

7. Exit Adpost.

Enter option number now.

7

5.6 Sample Output File from the ADPOST

Program

The output �le adpost.out from the interactive session given in Section 4.5
is listed below. Note that the output is similar to the ADPAC08 program
initially, as ADPOST reads in the input, mesh and restart �les. At the end
of the �le, the various summations from the mass-averages requested in the
interactive session are displayed.

ADPOST Post Processor Operating Instructions 287

aaaa dddd ppppp ooooo sssss ttttt

a a d d p p o o s t

aaaaa d d ppppp o o ssssss t

a a d d p o o s t

a a dddd p ooooo ssssss t

case name defined as: nasa

**

begin grid input

**

mesh file name: nasa.mesh

number of grids: (nblks) = 4

grid block dimensions :

block imx jmx kmx

----- --- --- ---

1 129 17 17

2 129 17 17

3 97 17 17

4 97 17 17

288 ADPOST Post Processor Operating Instructions

initialize storage array and pointer locations

block 3-d ijk length total length

1 1 42120 42120

2 42121 42120 84240

3 84241 31752 115992

4 115993 31752 147744

program array dimensions:

nra3d (3-d array size) = 350000

begin reading grid block coordinates

grid # 1 size 130 18 18

grid block 1 coordinates successfully read

conatan routine used for cylindrical conversion

grid # 2 size 130 18 18

grid block 2 coordinates successfully read

conatan routine used for cylindrical conversion

grid # 3 size 98 18 18

grid block 3 coordinates successfully read

conatan routine used for cylindrical conversion

grid # 4 size 98 18 18

grid block 4 coordinates successfully read

conatan routine used for cylindrical conversion

**

begin flow input

**

ADPOST Post Processor Operating Instructions 289

input file read on unit 15

input file data

rm (reference mach number) = 0.7500

gamma (specific heat ratio) = 1.4000

cfl (cfl number (+ time accurate) = 5.0000

vt (=1, time acc., =0, local time) = 0.0000

vis2 (2nd order dissipation factor) = 0.5000

vis4 (4th order dissipation factor) = 0.0156

fncmax (maximum iterations) = 10.0000

rest (1 = restart solution) = 0.0000

save (1 = save solution) = 0.0000

alpha (angle of attack) = 0.0000

fistep (recalculate time step) = 1.0000

fnprnt (1 = print flowfield) = 1.0000

fiprnt (1 = print partial flowfield) = 1.0000

finvvi (0 = inviscid flow solution) = 0.0000

(1 = viscous flow solution) =

epsx (i implicit smoothing factor) = 1.5000

epsy (j implicit smoothing factor) = 1.5000

epsz (k implicit smoothing factor) = 1.5000

iunint (# it. for unsteady plot3d file) = 9999.0000

itimei (#it between time step update) = 1.0000

iturbi (#it between turb. model update) = 1.0000

iturbb (#it before starting turb model) = 9999.0000

diam (blade diameter (ft)) = 9.0000

tref (total temperature (deg. r)) = 518.7000

pref (total pressure (lbf/ft**2)) = 2116.8000

rgas (gas constant (ft-lbf/lbm-deg r)) = 1716.2600

pr (prandtl number) = 0.7000

prt (turbulent prandtl number) = 0.9000

non-dimensional reference values calculated as:

290 ADPOST Post Processor Operating Instructions

rho0 (reference density) = 0.7660

u0 (reference axial velocity) = 0.8413

v0 (reference radial velocity) = 0.0000

w0 (reference theta velocity) = 0.0000

ei0 (reference internal energy) = 2.6011

h0 (reference enthalpy) = 3.5000

p0 (reference pressure) = 0.6886

t0 (reference temperature) = 0.8989

dmu0 (reference viscosity) = 0.9195

omega (rotational speed) = -1.9016

non-dimensional value for row 2 calculated as:

omega (rotational speed) = -1.9016

non-dimensional value for row 3 calculated as:

omega (rotational speed) = 0.0000

non-dimensional value for row 4 calculated as:

omega (rotational speed) = 0.0000

dimensional reference values calculated as:

rho0 (density (lbm/ft**3)) = 0.182151E-02

u0 (axial velocity (ft/s)) = 793.825

v0 (radial velocity (ft/s)) = 0.000000E+00

w0 (theta velocity (ft/s)) = 0.000000E+00

ei0 (total int. energy (ft-lbf/lbm)) = 0.231558E+07

h0 (total enthalpy (ft-lbf/lbm)) = 0.311578E+07

p0 (total pressure (lbf/ft**2)) = 1457.57

ADPOST Post Processor Operating Instructions 291

t0 (total temperature (deg. r)) = 466.247

dmu0 (viscosity (lbf-s/ft**2)) = 0.343739E-06

omega (rotational speed (rad/s)) = -199.351

rpm (rev/min (rev/min)) = -1903.66

additional blade row 2 values calculated as:

omega (rotational speed (rad/s)) = -199.351

rpm (rev/min (rev/min)) = -1903.66

additional blade row 3 values calculated as:

omega (rotational speed (rad/s)) = 0.000000E+00

rpm (rev/min (rev/min)) = 0.000000E+00

additional blade row 4 values calculated as:

omega (rotational speed (rad/s)) = 0.000000E+00

rpm (rev/min (rev/min)) = 0.000000E+00

nondimensionalization values calculated as:

rho (density (lbm/ft**3)) = 0.237783E-02

u (axial velocity (ft/s)) = 943.517

ei (total int. energy (ft-lbf/lbm)) = 890224.

p (total pressure (lbf/ft**2)) = 2116.80

t (total temperature (deg. r)) = 518.700

dmu (viscosity (lbf-s/ft**2)) = 0.373852E-06

omega (rotational speed (rad/s)) = 104.835

length (length (ft)) = 9.00000

input data successfully entered

292 ADPOST Post Processor Operating Instructions

set up block data:

cell area terms calculated for grid block # 1

cell area terms calculated for grid block # 2

cell area terms calculated for grid block # 3

cell area terms calculated for grid block # 4

cell volume terms calculated for grid block # 1

cell volume terms calculated for grid block # 2

cell volume terms calculated for grid block # 3

cell volume terms calculated for grid block # 4

**

begin restart input

**

restart file name: nasa.restart.old

number of blocks (nblksf): 4

restart file block sizes

block imx jmx kmx

1 130 18 18

2 130 18 18

3 98 18 18

4 98 18 18

ADPOST Post Processor Operating Instructions 293

restart data for block # 1 entered

restart data for block # 2 entered

restart data for block # 3 entered

restart data for block # 4 entered

FLOW QUANTITIES FOR BLOCK #1

MASS AVERAGING OVER i = CONSTANT SLICES

GRID MASSFLOW TOTAL TOTAL STATIC STATIC

SLICE AREA RATE PRESSURE TEMPERATURE PRESSURE TEMPERATURE

spanwise integration for grid surface i = 129

j slice # percent span mass flow ptotal ttotal swirl angle

2 0.000 - 0.022 0.388604E-03 1.12050 1.04476 -27.5691

3 0.022 - 0.052 0.559818E-03 1.12535 1.04529 -27.8464

4 0.052 - 0.094 0.799983E-03 1.12826 1.04510 -27.8023

5 0.094 - 0.148 0.113206E-02 1.13259 1.04478 -27.1676

6 0.148 - 0.217 0.156474E-02 1.13696 1.04483 -26.2078

7 0.217 - 0.301 0.208925E-02 1.14238 1.04527 -25.0896

8 0.301 - 0.397 0.264947E-02 1.14800 1.04656 -24.0559

9 0.397 - 0.500 0.315033E-02 1.15495 1.04885 -23.3043

10 0.500 - 0.603 0.347579E-02 1.16192 1.05161 -22.6446

11 0.603 - 0.699 0.352727E-02 1.16726 1.05458 -22.2051

12 0.699 - 0.783 0.329510E-02 1.16925 1.05701 -21.8015

13 0.783 - 0.852 0.285540E-02 1.16869 1.05906 -21.4849

14 0.852 - 0.906 0.231871E-02 1.16527 1.06065 -21.3212

15 0.906 - 0.948 0.179275E-02 1.16143 1.06218 -21.1105

16 0.948 - 0.978 0.133604E-02 1.15755 1.06373 -20.9239

17 0.978 - 1.000 0.972663E-03 1.15467 1.06496 -20.6821

294 ADPOST Post Processor Operating Instructions

129 0.5499E-01 0.3191E-01 0.1156E+01 0.1053E+01 0.9246E+00 0.9882E+00

processing completed

execution normally terminated

Chapter 6

STANDARD MESH BLOCK
CONFIGURATIONS

In this section, a description of several standard mesh block con�gurations
for ducted/unducted fans and other turbomachinery-related geometries are
given. The standard con�guration list de�nes a series of pretested mesh block
con�gurations for various turbomachinery-related calculations of interest to
gas turbine engine designers. The standard con�gurations, in conjunction
with the SETUP and ROTGRID programs described in Chapters 6 and 8,
respectively, attempt to remove some of the burdens of data preparation
involved in an ADPAC08 solution for inexperienced users. This particular
con�guration list does not imply any limitations on the ADPAC08 code itself.
In fact, the user is encouraged to try alternate mesh con�gurations within the
limitations of the ADPAC08 multiple block boundary condition application
strategy.

6.1 Description of Standard Con�gurations

Each of the prede�ned standard con�gurations are described below. A corre-
sponding graphic describing the individual con�gurations are given in Figures
6.1-6.10. In the description of a given con�guration, the mesh size is assumed
to be represented by the values imax; jmax; kmax as limits in the i, j, and

295

296 ADPAC08 Standard Mesh Block Con�gurations

k coordinate directions, respectively.

ADPAC08 Standard Mesh Block Con�gurations 297

Standard Con�guration #1

Title: Single-passage turbomachinery H-grid

Mesh Type: Single Block H-grid

Number of Mesh Blocks: 1

Flow Type: Steady

Geometry: Compressor rotor, stator, unducted fan, prop-
fan

Number of Blade Rows: 1

Mesh Generation Program: TIGG3D, CHGRIDV2, MULAC, and others

Standard Con�guration #1 consists of a single H-type mesh block discretiz-
ing a single blade passage of a turbomachinery blade row or propfan, as
shown in Figure 6.1. The mesh is spatially periodic, except in the vicinity
of the blades themselves. The blades are represented as a circumferential
displacement on the periodic surfaces (k=1 and k=kmax). Blade hub/tip
clearances may be represented by removing the blade displacement in the
clearance region above or below the blade. Inner boundaries on this mesh
include the blade leading and trailing edge i indices, and the blade base and
tip j indices. The passage endwalls (j=1, j=jmax) are represented as solid
surfaces (for a freestream outer boundary, see Standard Con�guration #2).
This is a relatively simple mesh to generate, and a number of grid genera-
tion schemes are available to construct this type of mesh. The advantage
of this mesh system lies in the simplicity and consistency with the manner
in which turbomachinery airfoils are de�ned and analyzed experimentally
(streamline-like radial planes, constant axial planes). The disadvantages of
this mesh system are that the airfoil leading and trailing edges are poorly
de�ned because of the sheared mesh system, and grid points are often not
used economically in the far �eld because of the requirement for mesh clus-
tering along the periodic boundaries in the vicinity of the blade (although
it is possible to construct meshes with 2-D mesh blocks in the far �eld to
reduce this ine�ciency).

298 ADPAC08 Standard Mesh Block Con�gurations

ADPAC Standard Configuration #1

i−jview

i

j

j−kview

j

k

AirfoilCan specify blade

base − hub clearance

Can specify blade

tip − tip clearance

Airfoils

Single Passage Turbomachinery H−Grid

leading edge trailing edge

Mesh Type : Single Passage H−Grid
Number of Blocks : 1
Flow Condition : Steady
Applications : Turbomachinery/Propfan

Steady Flow Aerodynamics

Configuration Information

Computational DomainSolid wall or freestream

outer boundary

Turbomachinery Cascade

Figure 6.1: Standard Con�guration #1 Geometry and Multiple Block Mesh
Structure

ADPAC08 Standard Mesh Block Con�gurations 299

Standard Con�guration #2

Title: Single-passage ducted propfan H-grid

Mesh Type: Two block H-grid

Number of Mesh Blocks: 2

Flow Type: Steady

Geometry: Ducted fan

Number of Blade Rows: 1

Mesh Generation Program: TIGG3D used with ROTGRID, and others

Standard Con�guration #2 consists of a pair of H-type mesh blocks discretiz-
ing a single blade passage of a ducted fan blade row, as shown in Figure 6.2.
Both mesh blocks are spatially periodic, except in the vicinity of the blades
themselves. The blades are represented as a circumferential displacement on
the periodic surfaces (k=1 and k=kmax) of mesh block #1. A hub spinner
boundary may be imposed as an embedded feature in mesh block #1. A
blade tip clearance may be imposed by removing the blade displacement to
satisfy spatial periodicity. The two mesh blocks are divided by the duct and
a pair of mating surfaces which extend upstream and downstream from the
duct leading and trailing edges. The duct itself is therefore represented as
a gap between the two mesh blocks. The mesh points de�ning the mating
surfaces are common to both mesh blocks. Inner boundaries on this mesh
include the blade leading and trailing edge i indices, the duct leading and
trailing edge i indices, the hub spinner leading and trailing edge i indices, and
the blade tip j index. This mesh is best generated using the TIGG3D grid
generation program in conjunction with the ROTGRID program to convert
the single block TIGG3D mesh into the two block system described above,
and to remove any duplicate mesh lines normally added by the TIGG3D pro-
gram for ducted geometries. The advantage of this mesh system lies in the
simplicity and consistency with the manner in which ducted fan airfoils are
de�ned and analyzed experimentally (streamline-like radial planes, constant
axial planes). The disadvantages of this mesh system are that the airfoil and
duct leading and trailing edges are poorly de�ned because of the sheared
mesh system, and grid points are often not used economically in the far �eld
because of the requirement for mesh clustering along the periodic boundaries

300 ADPAC08 Standard Mesh Block Con�gurations

ADPAC Standard Configuration #2

i−jview

i

j j
k

Airfoil

Free−flow Far Field Boundary

Airfoils

blade

leading edge

blade

trailing edge

Mesh Type : Single Passage H−Grid
Number of Blocks : 2
Flow Condition : Steady
Applications : Ducted Fan Steady

Flow Aerodynamics

Configuration Information

Single Passage Ducted Fan H−Grid

Duct Duct

spinner

leading edge

spinner

trailing edge

Block #2

Block #1

j−kview

Computational
Domain

Ducted
Fan

Figure 6.2: Standard Con�guration #2 Geometry and Multiple Block Mesh
Structure

in the vicinity of the blade and along radial planes in the vicinity of the duct
(although it is possible to construct meshes with 2-D mesh blocks in the far
�eld to reduce this ine�ciency).

ADPAC08 Standard Mesh Block Con�gurations 301

Standard Con�guration #3

Title: Single-passage ducted propfan C-grid

Mesh Type: Five block combination C-H grid

Number of Mesh Blocks: 5

Flow Type: Steady

Geometry: Ducted fan

Number of Blade Rows: 1

Mesh Generation Program: CHGRIDV2 and others

Standard Con�guration #3 consists of a �ve block mesh system employing
combined C and H type meshes, as shown in Figure 6.3, to discretize a single
blade passage of a ducted fan blade row. All mesh blocks are spatially peri-
odic, except in the vicinity of the blades themselves in block #1. The blades
are represented as a circumferential displacement on the periodic surfaces
(k=1 and k=kmax) of mesh block #1. A hub spinner boundary may be im-
posed as an embedded feature in mesh block #1. A blade tip clearance may
be imposed by removing the blade displacement to satisfy spatial periodic-
ity. The mesh blocks share common points along all of the mating surfaces
between neighboring mesh blocks. Inner boundaries on this mesh include the
blade leading and trailing edge i indices, the C-grid/H-grid mating i indices,
the duct trailing edge i indices, and the hub spinner leading and trailing edge
i indices. This mesh is best generated using the CHGRIDV2 grid generation
program. The advantage of this mesh system lies in the detailed represen-
tation of the duct leading edge permitted by the embedded C-grid, and the
ability to e�ciently cluster points about the duct surface and wake. The
disadvantages of this mesh system are that the airfoil leading and trailing
edges are poorly de�ned because of the sheared mesh system, and grid points
are often not used economically in the far �eld because of the requirement
for mesh clustering along the periodic boundaries in the vicinity of the blade
and along radial planes in the vicinity of the duct. Another disadvantage of
this mesh system is the complexity of the boundary speci�cations required
to couple the mesh blocks, and the possibility of poor convergence as a result
of the many inner domain block boundaries.

302 ADPAC08 Standard Mesh Block Con�gurations

ADPAC Standard Configuration #3

i−jview

i

j j

k

Airfoil

Free−flow Far Field Boundary

Airfoils

blade

leading edge
blade

trailing edge

Mesh Type : Single Passage 5−Block C−H Grid System
Number of Blocks : 5
Flow Condition : Steady
Applications : Ducted Fan Steady

Flow Aerodynamics

Configuration Information

Single Passage Ducted Fan C−H Grid

Duct

spinner

leading edge

spinner

trailing edge

Block #2

Block #1

j−kview

Block #3 (C−Mesh)

Block #4

Block #5

C−gridduct

trailing edge

Computational
Domain

Ducted
Fan

Figure 6.3: Standard Con�guration #3 Geometry and Multiple Block Mesh
Structure

ADPAC08 Standard Mesh Block Con�gurations 303

Standard Con�guration #4

Title: Full rotor unducted propfan H-grid

Mesh Type: Blade passage H-grid

Number of Mesh Blocks: 1*N (N=Number of Blades)

Flow Type: Unsteady

Geometry: Propeller, profan, unducted fan, compressor at
angle of attack

Number of Blade Rows: 1

Mesh Generation Program: TIGG3D, CHGRIDV2, MULAC, then use ROT-
GRID, or others

Standard Con�guration #4 consists of multiple grid blocks discretizing a
complete blade row of an unducted fan or internal turbomachinery blade
row using a single H-type mesh block per blade passage. This mesh system
is illustrated in Figure 6.4. Each blade passage mesh block is similar in form
to the mesh systems in Standard Con�guration #1, above. The individual
blade passage mesh blocks are spatially periodic, except in the vicinity of the
blades themselves. The blades are represented as a circumferential displace-
ment on the periodic surfaces (k=1 and k=kmax) of each mesh block. Blade
hub/tip clearances may be represented by removing the blade displacement
in the clearance region above or below the blade. Inner boundaries on this
mesh include the blade leading and trailing edge i indices, and the blade base
and tip j indices. The passage endwalls (j=1, j=jmax) are represented as
either solid surfaces or a freestream outer boundary. This is a relatively sim-
ple mesh to generate, and a number of grid generation schemes are available
to construct this type of mesh for a single blade passage. The ROTGRID
program can be used to create the duplicate blade passage mesh blocks for
the full rotor geometry. Periodic surfaces between adjacent blade passages
share common mesh points. The advantage of this mesh system lies in the
simplicity and consistency with the manner in which turbomachinery air-
foils are de�ned and analyzed experimentally (streamline-like radial planes,
constant axial planes). The disadvantages of this mesh system are that the
airfoil leading and trailing edges are poorly de�ned because of the sheared
mesh system, and grid points are often not used economically in the far �eld

304 ADPAC08 Standard Mesh Block Con�gurations

ADPAC Standard Configuration #4

i−j view (each blade passage)

i
j jk

Airfoil

Free−flow Far Field Boundary

Airfoils

blade

leading edge

blade

trailing edge

Mesh Type : Full Rotor H−Mesh System
Number of Blocks : 1*Number of Blades
Flow Condition : Unsteady
Applications : Unducted Fan at Angle of Attack

Configuration Information

Full Rotor Unducted Fan H−Grid

spinner

leading edge

spinner

trailing edge

Block #1

j−k view (each blade passage)

Increasing Block
Number

#1#2
#3

#4

Figure 6.4: Standard Con�guration #4 Geometry and Multiple Block Mesh
Structure

because of the requirement for mesh clustering along the periodic boundaries
in the vicinity of the blade (although it is possible to construct meshes with
2-D mesh blocks in the far �eld to reduce this ine�ciency).

ADPAC08 Standard Mesh Block Con�gurations 305

Standard Con�guration #5

Title: Full rotor ducted propfan H-grid

Mesh Type: 2-Block H-grid per blade passage

Number of Mesh Blocks: 2*N (N=Number of Blades)

Flow Type: Unsteady

Geometry: Ducted Fan at Angle of Attack

Number of Blade Rows: 1

Mesh Generation Program: TIGG3D, CHGRIDV2, MULAC used with ROT-
GRID, and others

Standard Con�guration #5 consists of multiple grid blocks discretizing a
complete blade row of a ducted fan using a pair of H-type mesh blocks per
blade passage. Each blade passage consists of two mesh blocks in the same
manner as the mesh system in Standard Con�guration #2, above. The mesh
block structure and numbering scheme is illustrated in Figure 6.5. The mesh
blocks for a given blade passage are spatially periodic, except in the vicinity
of the blades themselves. The blades are represented as a circumferential
displacement on the periodic surfaces (k=1 and k=kmax) of the inner mesh
block. A hub spinner boundary may be imposed as an embedded feature in
the inner mesh block. A blade tip clearance may be imposed by removing
the blade displacement to satisfy spatial periodicity. The two mesh blocks
per blade passage are divided by the duct, and mating surfaces which extend
upstream and downstream from the duct leading and trailing edges. The
duct itself is therefore represented as a gap between the two mesh blocks in
each passage. The mesh systems share common points along all of the mating
surfaces between neighboring mesh blocks. Inner boundaries on this mesh
include the blade leading and trailing edge i indices, the duct leading and
trailing edge i indices, the hub spinner leading and trailing edge i indices,
and the blade tip j index. A single blade passage mesh is best generated
using the TIGG3D grid generation program in conjunction with the ROT-
GRID program to convert the single block TIGG3D mesh into the two block
system per blade passage, and ultimately a full rotor mesh system. The ad-
vantage of this mesh system lies in the simplicity and consistency with the
manner in which ducted fan airfoils are de�ned and analyzed experimentally

306 ADPAC08 Standard Mesh Block Con�gurations

ADPAC Standard Configuration #5

i−j view (each blade passage)

i
j jk

Airfoil

Free−flow Far Field Boundary

Airfoils

blade

leading edge

blade

trailing edge

Mesh Type : Full Rotor H−Mesh System
Number of Blocks : 2*Number of Blades
Flow Condition : Unsteady
Applications : Ducted Fan at Angle of Attack

Configuration Information

Full Rotor Ducted Fan H−Grid

Duct
Duct

spinner

leading edge

spinner

trailing edge

Block #2

Block #1

j−k view (each blade passage)

Increasing Block
Number

#2

#1#3

#4

#5
#6

Figure 6.5: Standard Con�guration #5 Geometry and Multiple Block Mesh
Structure

(streamline-like radial planes, constant axial planes). The disadvantages of
this mesh system are that the airfoil and duct leading and trailing edges are
poorly de�ned because of the sheared mesh system, and grid points are often
not used economically in the far �eld because of the requirement for mesh
clustering along the periodic boundaries in the vicinity of the blade (although
it is possible to construct meshes with 2-D mesh blocks in the far �eld to
reduce this ine�ciency).

ADPAC08 Standard Mesh Block Con�gurations 307

Standard Con�guration #6

Title: Full Rotor Ducted Fan C-H Grid System

Mesh Type: Five Block C-H Combination

Number of Mesh Blocks: 5*N (N=Number of Blades)

Flow Type: Unsteady

Geometry: Ducted Fan at Angle of Attack

Number of Blade Rows: 1

Mesh Generation Program: CHGRIDV2 used with ROTGRID and others

Standard Con�guration #6 consists of multiple grid blocks discretizing a
complete blade row of a ducted fan using a combination C-H mesh system
per blade passage. Each blade passage consists of �ve mesh blocks in the
same manner as the mesh system in Standard Con�guration #3, above.
The mesh block structure and numbering scheme is illustrated in Figure 6.6.
The mesh blocks for a given blade passage are spatially periodic, except
in the vicinity of the blades themselves. The blades are represented as a
circumferential displacement on the periodic surfaces (k=1 and k=kmax)
of the inner mesh block. A hub spinner boundary may be imposed as an
embedded feature in the inner mesh block. The mesh systems share common
points along all of the mating surfaces between neighboring mesh blocks. A
single blade passage mesh system may be generated using the CHGRIDV2
grid generation program. The full rotor mesh can then be constructed by
using the ROTGRID program. The advantage of this mesh system lies in the
detailed representation of the duct leading edge permitted by the embedded
C-grid, and the ability to e�ciently cluster points about the duct surface and
wake. The disadvantages of this mesh system are that the airfoil leading and
trailing edges are poorly de�ned because of the sheared mesh system, and
grid points are often not used economically in the far �eld because of the
requirement for mesh clustering along the periodic boundaries in the vicinity
of the blade and along radial planes in the vicinity of the duct. (although
it is possible to construct meshes with 2-D mesh blocks in the far �eld to
reduce this ine�ciency). Another disadvantage of this mesh system is the
complexity of the boundary speci�cations required to couple the mesh blocks,
and the possibility of poor convergence as a result of the many inner domain

308 ADPAC08 Standard Mesh Block Con�gurations

ADPAC Standard Configuration #6

i−j view (each blade passage)

i
j jk

Airfoil

Free−flow Far Field Boundary

Airfoils

blade

leading edge

blade

trailing edge

Mesh Type : Full Rotor C−H Mesh System
Number of Blocks : 5*Number of Blades
Flow Condition : Unsteady
Applications : Ducted Fan at Angle of Attack

Configuration Information

Full Rotor Ducted Fan C−H Grid

Duct Duct

spinner

leading edge

spinner

trailing edge

Block #2

Block #1

j−k view (each blade passage)

Block #3 (C−Mesh)

Block #4

Block #5

C−gridduct

trailing edge

Increasing Block
Number

#1#6

#10
#5

#15

#11
#12

#7 #2

Figure 6.6: Standard Con�guration #6 Geometry and Multiple Block Mesh
Structure

block boundaries.

ADPAC08 Standard Mesh Block Con�gurations 309

Standard Con�guration #7

Title: Multiple Blade Row, Multiple Passage H-Grid

Mesh Type: Single Block H-grid per Blade Passage

Flow Type: Unsteady

Geometry: Counterrotating propeller, profan, unducted fan,
compressor

Number of Blade Rows: Arbitrary

Mesh Generation Program: TIGG3D and ROTGRID, or others

Standard Con�guration #7 is a solution technique for analyzing the unsteady

ow through a multiple blade row turbomachine. This con�guration would
be appropriate for the analysis of a counterrotating unducted fan, or for
the internal
ow in a multistage turbomachine. The mesh structure and
boundary conditions are generated based on the time-dependent rotor-stator
interaction solution approach discussed in Section 2.2. Several blade passages
of each blade row are modeled, such that the total circumferential pitch
for each blade row is constant. This implies that the number of blades in
each row must be reducible to simple integer ratios (i.e. 3:4 for two blade
rows, 3:4:6 for three blade rows, etc.), otherwise the number of passages
which must be modeled for each blade row would be excessive. Each blade
passage is discretized by a single H-type mesh block, similar to the mesh
system described by Standard Con�guration #1. The mesh block structure
and numbering scheme is illustrated in Figure 6.7. The mesh block for a
given blade passage is spatially periodic, except in the vicinity of the blades
themselves. The blades are represented as a circumferential displacement on
the periodic surfaces (k=1 and k=kmax) of each mesh block. At the interface
between blade rows, the mesh surfaces share a common surface of revolution,
and the axial and radial distribution of grid points in each mesh are identical
at the interblade row interface (this reduces the interpolation of information
between blade rows to the circumferential direction only).

310 ADPAC08 Standard Mesh Block Con�gurations

i−jview

i
j

j−kview

Blade
Row #2

Can specify blade
base − hub clearance

Multiple Blade Row/Multiple Passage Turbomachinery H−Grid

leading edge trailing edge

Mesh Type : Multiple Passage/Multiple
Blade Row H−Grid

Number of Blocks : Case Dependent Based on
Number of Blade Rows and
Number of Passages per

Blade Row
Flow Condition : Unsteady
Applications : Turbomachinery Rotor/Stator

Interaction

Configuration Information

ADPAC Standard Configuration #7

Blade
Row #1

Blade
Row #3

time/space interpolation

at blade row interface planes

Can specify blade
tip − tip clearance

Multistage
Turbomachine

Increasing Block Number

Airfoils

Block #1Block #2

#1#2#3

#4
#5

Figure 6.7: Standard Con�guration #7 Geometry and Multiple Block Mesh
Structure

ADPAC08 Standard Mesh Block Con�gurations 311

Standard Con�guration #8

Title: Multiple Blade Row Multiple Passage Ducted
Fan H-Grid

Mesh Type: Two Block H-grid per Blade Passage

Flow Type: Unsteady

Geometry: Ducted fan

Number of Blade Rows: Arbitrary

Mesh Generation Program: TIGG3D followed by ROTGRID, or others

Standard Con�guration #8 is a solution technique for analyzing the un-
steady
ow through a multiple blade ducted fan con�guration, as shown in
Figure 6.8. The mesh structure and boundary conditions are generated based
on the time-dependent rotor-stator interaction solution approach discussed
in Section 2.2. Several blade passages of each blade row are modeled, such
that the total circumferential pitch for each blade row is constant. This
implies that the number of blades in each row must be reducible to simple
integer ratios (i.e. 3:4 for two blade rows, 3:4:6 for three blade rows, etc.),
otherwise the number of passages which must be modeled for each blade
row would be excessive. Each blade passage is discretized by a two H-type
mesh blocks, similar to the mesh system described by Standard Con�gura-
tion #2. The mesh block structure and numbering scheme is illustrated in
Figure 6.8. The mesh blocks for a given blade passage are spatially periodic,
except in the vicinity of the blades themselves. The blades are represented as
a circumferential displacement on the periodic surfaces (k=1 and k=kmax)
of the inner mesh block. For each blade passage, the two mesh blocks are
divided by the duct and a pair of mating surfaces which extend upstream
and downstream from the duct leading and trailing edges. The duct itself is
therefore represented as a gap between the two mesh blocks. The mesh points
de�ning the mating surfaces are common to both mesh blocks. The outer
meshes are aligned circumferentially with the outer mesh distribution of the
inner block. At the interface between blade rows, the mesh surfaces share a
common surface of revolution, and the axial and radial distribution of grid
points in each mesh are identical at the interblade row interface (this reduces
the interpolation of information between blade rows to the circumferential

312 ADPAC08 Standard Mesh Block Con�gurations

BB
BB
BB
BB

BB
BBB
B
B

B
BB
BB
BB
BB

**
**

**
**
**

*

***BBBBB
BB
BB

BBB
BBB
BBB**

**
**

ADPAC Standard Configuration #8
Multiple Blade Row/Multiple Passage Ducted Fan H−Grid

Mesh Type ; Two Block H−Grid
Number of Blocks:Depends on the number

of blade rows and the
number of passages per row

Flow Condition : Unsteady
Applications : Rotor/Stator interaction for

a ducted fan

i
j jk

Airfoil

Free−flow Far Field Boundary

Airfoils

blade

leading edge

blade

trailing edge

Duct
Duct

spinner

leading edge

spinner

trailing edge

Block #2

Block #1

#1

#2

#3

#4

#5#6

Increasing
Block Number

Airfoil

Configuration Information

Figure 6.8: Standard Con�guration #8 Geometry and Multiple Block Mesh
Structure

direction only).

ADPAC08 Standard Mesh Block Con�gurations 313

Standard Con�guration #9

Title: Multiple Blade Row Circumferential-Average H-
Grid

Mesh Type: Single Block H-grid per Blade Row

Flow Type: Steady

Geometry: Counterrotating propeller, profan, unducted fan,
compressor

Number of Blade Rows: Arbitrary

Mesh Generation Program: TIGG3D and ROTGRID, or others

Standard Con�guration #9 is a solution technique for analyzing the steady

ow through a multiple blade row turbomachine. This con�guration would
be appropriate for the analysis of a counterrotating unducted fan, or for
the internal
ow in a multistage turbomachine. The mesh structure and
boundary conditions are generated based on the mixing plane concept solu-
tion approach discussed in Section 2.2. A single blade passage in each blade
row is modeled, with a surface of revolution mixing plane as the interface
between blade rows. Each blade passage is discretized by a single H-type
mesh block, similar to the mesh system described by Standard Con�gura-
tion #1. The mesh block structure and numbering scheme is illustrated in
Figure 6.9. The mesh block for a given blade passage is spatially periodic,
except in the vicinity of the blades themselves. The blades are represented as
a circumferential displacement on the periodic surfaces (k=1 and k=kmax)
of each mesh block. At the interface between blade rows, the mesh surfaces
share a common surface of revolution, and the axial and radial distribution
of grid points in each mesh are identical at the interblade row interface (this
simpli�es the circumferential averaging operator).

314 ADPAC08 Standard Mesh Block Con�gurations

i−jview

i

j

j−kview

jk

Blade
Row #2

Can specify blade
base − hub clearance

Airfoils

Multiple Blade Row Turbomachinery H−Grid
Using Circumferential Averaging

row #2

leading edge

row #2

trailing edge

Mesh Type : Single Passage H−Grid
Number of Blocks : 1*Number of Blade Rows
Flow Condition : Steady
Applications : Multistage Turbomachinery

Steady Flow Aerodynamics

Configuration Information

ADPAC Standard Configuration #9

Blade
Row #1

Blade
Row #3

circumferential

averaging planes

Can specify blade
tip − tip clearance

Multistage
Turbomachine

#1

#2

#3

row #1

leading edge

row #3

trailing edge

row #1

trailing edge

row #3

leading edge

Figure 6.9: Standard Con�guration #9 Geometry and Multiple Block Mesh
Structure

ADPAC08 Standard Mesh Block Con�gurations 315

Standard Con�guration #10

Title: Multiple Blade Row Circumferential Average
Ducted Fan H-Grid

Mesh Type: Two Block H-grid per Blade Row

Flow Type: Steady

Geometry: Ducted fan

Number of Blade Rows: Arbitrary

Mesh Generation Program: TIGG3D followed by ROTGRID, or others

Standard Con�guration #10 is a solution technique for analyzing the steady

ow through a multiple blade ducted fan con�guration, as shown in Fig-
ure 6.10. The mesh structure and boundary conditions are generated based
on the mixing plane concept solution approach discussed in Section 2.2. A
single blade passages of each blade row is modeled. Each blade passage is dis-
cretized by a two H-type mesh blocks, similar to the mesh system described
by Standard Con�guration #2. The mesh block structure and numbering
scheme is illustrated in Figure 6.10. The mesh blocks for a given blade pas-
sage are spatially periodic, except in the vicinity of the blades themselves.
The blades are represented as a circumferential displacement on the periodic
surfaces (k=1 and k=kmax) of the inner mesh block. For each blade passage,
the two mesh blocks are divided by the duct and a pair of mating surfaces
which extend upstream and downstream from the duct leading and trailing
edges. The duct itself is therefore represented as a gap between the two mesh
blocks. The mesh points de�ning the mating surfaces are common to both
mesh blocks. The outer meshes are aligned circumferentially with the outer
mesh distribution of the inner block. At the interface between blade rows,
the mesh surfaces share a common surface of revolution, and the axial and
radial distribution of grid points in each mesh are identical at the mixing
plane (this simpli�es the circumferential averaging operator).

316 ADPAC08 Standard Mesh Block Con�gurations

BB
BB
BB
BB

BB
BBB
B
B

B
BB
BB
BB
BB

**
**

**
**
**

*

***BBBBB
BB
BB

BBB
BBB
BBB**

**
**

ADPAC Standard Configuration #10
Multiple Blade Row/Circumferential Average Ducted Fan H−Grid

Mesh Type ; Two Block H−Grid
Number of Blocks: 2*Number of Blade Rows
Flow Condition : Steady
Applications : Multistage Analysis of

a Ducted Fan Using Circumferential
Averaging

i
j jk

Airfoil

Mixing Plane

Airfoils

blade

leading edge

blade

trailing edge

Duct
Duct

spinner

leading edge

spinner

trailing edge

Block #2

Block #1

#1

#2

Increasing
Block Number

Airfoil

Configuration Information #3

#4

Figure 6.10: Standard Con�guration #10 Geometry and Multiple Block
Mesh Structure

Chapter 7

ROTGRID PROGRAM
DESCRIPTION

The standard distribution for the ADPAC08 program includes a program
which aids the user in setting up mesh �les for each of the standard con�gu-
rations listed in Chapter 5. This program, referred to simply as ROTGRID,
is an interactive, menu based program which queries the user for the spe-
ci�c information needed to properly con�gure a multiple-block mesh for the
ADPAC08 code for the given con�guration. ROTGRID then goes about the
task of collecting mesh coordinate data and writing a corresponding mesh
�le for the ADPAC08 solution. ROTGRID is set up speci�cally for mesh
�les initially generated using the TIGG3D grid generation program. Under
some circumstances, meshes generated by the CHGRIDV2 program are also
treated properly. If ROTGRID cannot handle a particular mesh system prop-
erly, the user can assemble an ADPAC08 mesh from a collection of isolated
mesh blocks by using the program MAKEADGRID described in Chapter 7.

317

318 ROTGRID Program Description

7.1 Con�guring ROTGRID Maximum Array

Dimensions

Maximum array dimensions in the ROTGRID program are set by the FOR-
TRAN PARAMETER statements listed in the �le parameter.inc included
with the ROTGRID source program. A sample parameter.inc �le with the
corresponding parameter descriptions would appear as:

C**

C

C PARAMETER DESCRIPTION FILE:

C

C imx --- > maximum number of grid elements in the i coordinate direction

C for any given mesh block

C jmx --- > maximum number of grid elements in the j coordinate direction

C for any given mesh block

C kmx --- > maximum number of grid elements in the k coordinate direction

C for any given mesh block

C nblks - > maximum number of grid blocks for the rotated grid

C mrowmx --> maximum number of blade rows for the rotated grid

C

C---> Note: PARAMETER nrowmx must be >= 5.

C

parameter(imx=225,jmx=50,kmx=91,nblks= 5,nrowmx=2)

7.2 Compiling the ROTGRID Program

The ROTGRID program source directory contains a UNIX-based Make�le
facility to automate compilation for a number of machines. In the direc-
tory containing the FORTRAN source of the SETUP code, compilation is
performed by executing the command:

make option

ROTGRID Program Description 319

The make command is standard on UNIX systems and automatically inter-
rogates the �le Make�le for instructions on how to perform the compilation.
The option argument may be any of the variables listed below:

No argument - same as link below.

link This is the standard UNIX system compilation. This option will deliver a
working executable on most UNIX systems which support standard naming
conventions (f77 as the standard compiler, etc.). The compilation includes
basic compiler optimization (f77 -O).

cray This option is utilized when compiling the ROTGRID code on a Cray com-
puter.

aix This option is used when compiling the ROTGRID standard code on an IBM
RS-6000 workstation running the AIX operating system.

7.3 Running the ROTGRID Program

Once the code has been compiled, change directories to the location where the
case of interest has been stored. The ROTGRID program requires that the
mesh has already been generated, as it will seek out the mesh �le case.mesh,
where case is the case name used in the �le naming convention (see Section
3.5).

The ROTGRID program is invoked by issuing the command:

path/rotgrid

where path is the relative or absolute pathname of the directory containing
the ROTGRID executable �le from the current local directory. For example,
if the mesh �le is in the directory

/usr/people/me/testcase

and the ROTGRID executable is in the directory

320 ROTGRID Program Description

/usr/people/me/adpac/src/rotgrid

then the commands

cd /usr/people/me/testcase

/usr/people/me/adpac/src/rotgrid/rotgrid

would begin the ROTGRID program process.

Once the ROTGRID program is invoked, the user is asked to de�ne the
case name used in the �le naming process (see Section 3.5). Following this,
the user is asked to select the desired standard con�guration. After the
user selects one of the standard con�gurations, a series of speci�c questions
pertaining to the requested con�guration must be answered. Due to the large
number of possibilities, it is not possible to explain all of the questions and
answers in detail here. The responses to the program inquiries are intended
to be fairly self-explanatory, and the user is urged to simply run the program
for further details.

Chapter 8

MAKEADGRID PROGRAM
DESCRIPTION

The standard distribution for the ADPAC08 program includes a program
called MAKEADGRID which aids the user in setting up a multiple-block
mesh �le from isolated unformatted mesh �les. This program is useful for
creating ADPAC08 compatible multiple-block meshes from output from grid
generation programs which are not supported by ROTGRID or which do
not utilize the Scienti�c Database Library (SDBLIB). The MAKEADGRID
program is an interactive program which queries the user for the number
of blocks to be assembled for the �nal mesh, and then requests a �le name
for each of the individual mesh blocks. The user is then requested to name
the �nal output �le for the ADPAC08 compatible multiple-block mesh. The
individual mesh blocks are assembled in the order in which the mesh �le
names are speci�ed, so care must be taken to order these names appropriately.

8.1 Con�guringMAKEADGRIDMaximum Ar-

ray Dimensions

Maximum array dimensions in the MAKEADGRID program are set by the
FORTRAN PARAMETER statements listed in the source �lemakeadgrid.f

321

322 MAKEADGRID Program Description

included with the standard distribution. The PARAMETER statement and
the descriptions of the various parameter variables appear at the top of the
�le as:

C

C

C makeadgrid: This program assembles an ADPAC-compatible mesh file

C from selected other unformatted PLOT3D mesh files

C

C

C Set parameter size for max grid block to be read in

C

C imax --- > maximum number of grid elements in the i coordinate direction

C for any given mesh block

C jmax --- > maximum number of grid elements in the j coordinate direction

C for any given mesh block

C kmax --- > maximum number of grid elements in the k coordinate direction

C for any given mesh block

C nnames - > maximum number of grid blocks for final mesh

C

parameter(imax=251, jmax=82, kmax=53)

parameter(nnames = 100)

8.2 Compiling the MAKEADGRID Program

TheMAKEADGRID program source directory contains a UNIX-based Make-
�le facility to automate compilation for a number of machines. In the direc-
tory containing the FORTRAN source of the MAKEADGRID code, compi-
lation is performed by executing the command:

make option

The make command is standard on UNIX systems and automatically inter-
rogates the �le Make�le for instructions on how to perform the compilation.
The option argument may be any of the variables listed below:

MAKEADGRID Program Description 323

No argument - same as link below.

link This is the standard UNIX system compilation. This option will deliver a
working executable on most UNIX systems which support standard naming
conventions (f77 as the standard compiler, etc.). The compilation includes
basic compiler optimization (f77 -O).

cray This option is utilized when compiling the standard code on a Cray computer.

aix This option is used when compiling the standard code on an IBM RS-6000
workstation running the AIX operating system.

8.3 Running the MAKEADGRID Program

Once the code has been compiled, change directories to the location where
the case of interest has been stored. The MAKEADGRID program requires
that each individual mesh block for the �nal mesh be stored separately as a
single-grid unformatted PLOT3D �le .

The MAKEADGRID program is invoked by issuing the command:

path/makeadgrid

where path is the relative or absolute pathname of the directory containing
the MAKEADGRID executable �le from the current local directory. For
example, if the mesh �le is in the directory

/usr/people/me/testcase

and the MAKEADGRID executable is in the directory

/usr/people/me/adpac/src/makeadgrid

then the commands

cd /usr/people/me/testcase

/usr/people/me/adpac/src/makeadgrid/makeadgrid

would begin the MAKEADGRID program process.

324 MAKEADGRID Program Description

8.4 Sample Session Using the MAKEADGRID

Program

A sample session using the MAKEADGRID program for the mesh illustrated
in Figure 2.4 is given below. In this case, the mesh was originally generated
using a proprietary mesh generation program, and hence, required some ma-
nipulation in order to construct the multiblock mesh for an ADPAC08 solu-
tion. The mesh consists of 3 mesh blocks (the O-grid about the airfoil, and 2
H-grid caps upstream and downstream of the O-grid) named block1.mesh,
block2.mesh, and block3.mesh. The MAKEADGRID session used to cre-
ate the �nal mesh named vbivane.mesh is listed below. The user responses
to the MAKEADGRID program are given in boldfaced type.

**

MAKEADGRID - construction program for

creating ADPAC mesh files

from selected PLOT3D unformatted

mesh files.

**

Enter the number of blocks

3

Enter the name of the 1 grid to process

(Remember: each file must be unformatted PLOT3D style

block1.mesh

MAKEADGRID Program Description 325

Enter the name of the 2 grid to process

(Remember: each file must be unformatted PLOT3D style

block2.mesh

Enter the name of the 3 grid to process

(Remember: each file must be unformatted PLOT3D style

block2.mesh

Getting grid sizes and extra info from grid files

Loop= 1 mg= 0 il,jl,kl= 129 33

33

Loop= 2 mg= 0 il,jl,kl= 17 33

17

Loop= 3 mg= 0 il,jl,kl= 17 33

17

Enter the file name for the final grid

vbivane.mesh

Final grid data in file

vbivane.mesh

326 MAKEADGRID Program Description

Output file array size

Loop = 1 --> 129 33 33

Loop = 2 --> 17 33 17

Loop = 3 --> 17 33 17

Array sizes output to final file

Reading Grid Data from file

block1.mesh

il, jl, kl ---> 129 33 33

Output grid data to final file

Reading Grid Data from file

block2.mesh

il, jl, kl ---> 17 33 17

Output grid data to final file

Reading Grid Data from file

block3.mesh

il, jl, kl ---> 17 33 17

Output grid data to final file

PROGRAM COMPLETED NORMALLY

Chapter 9

SETUP PROGRAM
DESCRIPTION

The standard distribution for the ADPAC08 program includes a program
which aids the user in setting up an input �le and a boundary data �le for each
of the standard con�gurations listed in Chapter 5. This program, referred to
simply as SETUP, is an interactive, menu based program which queries the
user for the speci�c information needed by the ADPAC08 code for the given
con�guration, and then goes about the task of writing a corresponding input
and boundary data �le for an ADPAC08 solution.

9.1 Con�guring SETUP Maximum Array Di-

mensions

Maximum array dimensions in the SETUP program are set by the FOR-
TRAN PARAMETER statements listed in the �le parameter.inc included
with the SETUP source program. A sample parameter.inc �le would ap-
pear as:

parameter(nbmax = 100)

parameter(ninvar = 100)

327

328 SETUP Program Description

The PARAMETER variable NBMAX determines the maximum number of
mesh blocks which can be manipulated using SETUP. The PARAMETER
variable NINVAR determines the maximum number of input �le variables
which is permitted and need not be changed unless the SETUP program
is modi�ed to incorporate additional input �le variables (which would then
require a corresponding modi�cation to the ADPAC08 program).

9.2 Compiling the SETUP Program

The SETUP program source directory contains a UNIX-based Make�le fa-
cility to automate compilation for a number of machines. In the directory
containing the FORTRAN source of the SETUP code, compilation is per-
formed by executing the command:

make option

The make command is standard on UNIX systems and automatically inter-
rogates the �le Make�le for instructions on how to perform the compilation.
The option argument may be any of the variables listed below:

No argument - same as link below.

link This is the standard UNIX system compilation. This option will deliver a
working executable on most UNIX systems which support standard naming
conventions (f77 as the standard compiler, etc.). The compilation includes
basic compiler optimization (f77 -O).

cray This option is utilized when compiling the SETUP code on a Cray computer.

aix This option is used when compiling the SETUP code on an IBM RS-6000
workstation running the AIX operating system.

9.3 Running the SETUP Program

Once the code has been compiled, change directories to the location where
the case of interest has been stored. The SETUP program requires that the

SETUP Program Description 329

mesh has already been generated, as it will seek out the mesh �le case.mesh,
where case is the case name used in the �le naming convention (see Section
3.5).

The SETUP program is invoked by issuing the command:

path/setup

where path is the relative or absolute pathname of the directory containing
the SETUP executable �le from the current local directory. For example, if
the mesh �le is in the directory

/usr/people/me/testcase

and the SETUP executable is in the directory

/usr/people/me/adpac/src/setup

then the commands

cd /usr/people/me/testcase

/usr/people/me/adpac/src/setup/setup

would begin the SETUP program process.

Once the SETUP program is invoked, the user is �rst requested to enter the
case name used in the ADPAC08 �le naming convention (see Section 3.5).
Following a series of questions used to de�ne the
ow condition, the user
indicates which standard con�guration is desired, and the SETUP program
proceeds from there to construct a standard input �le and a boundary data
�le for the given con�guration based on the user input. The grid information
indicated in the appropriate standard con�guration illustration (Figures 6.1-
6.10) should be available, as well as the desired
ow conditions. The inter-
active questions and responses for the SETUP program are intended to be
self-explanatory, and the user is urged to simply run the program for further
details.

330 SETUP Program Description

Chapter 10

ADPAC08 INTERACTIVE
GRAPHICS DISPLAY

The ADPAC08 program is equipped with an option which permits real time
interactive graphics display of
ow data in the form of colored contours or
velocity vectors on geometries represented by wiremesh grid surfaces. The in-
teractive graphics are based largely on routines generated from the PLOT3D
visualization program, and many of the features of this option should be
familiar to anyone who has used PLOT3D. All interactive graphics must be
displayed on a Silicon Graphics workstation, IRIX Operating System 4.0.1 or
above. The graphics display can be operated on a single computing platform,
or can be directed across a network for speci�c computer hardware con�gura-
tions. Thus, it is possible to have a job running remotely on a Cray computer,
with interactive graphics displayed locally on a network-connected Silicon
Graphics workstation. When operating across a network which involves a
non-Silicon Graphics computer, the communication program AGTPLT-LCL
must be running on the local display device in order to capture the graphics
commands issued by the remote compute server (details on AGTPLT-LCL
are given below). A graphic illustrating the possible graphics display operat-
ing modes is given in Figure 10.1. It should be mentioned that the interactive
graphics display was not a contracted feature, and was actually developed to
aid in debugging the multiple block code. The description of this feature is
included in this manual for completeness, but the user should be cautioned
due to the immature nature of this portion of the code. It is also likely that

331

332 ADPAC08 Interactive Graphics Display

the graphics option may not port correctly to future releases of the IRIX
operating system, and again, the user is cautioned concerning the use of this
feature.

10.1 Setting up the Program

The �rst step in producing the real time interactive graphics display is to cor-
rectly compile the code to include the graphics libraries. This is accomplished
by utilizing the appropriate option in the ADPAC08 Make�le command (see
Section 3.4). The valid graphics options include graphics, pfagraphics, cray-
graphics, aixgraphics, and craygraphdbx. These options incorporate various
levels of the included graphics libraries for execution on various machines
(again, see Section 3.4 for speci�c Make�le details).

Once the code has been correctly compiled to include the graphics libraries,
several input parameters must be correctly initiated to engage the graphics
subroutines during the execution of the code. The input keyword FGRAFIX
must have a value of 1.0 to initiate any graphics instructions. The keyword
FGRAFINT determines the number of time-marching iterations between
graphics window updates. The keyword FIMGSAV is a trigger (0.0 - o�,
1.0 - on) which determines whether periodic image capturing is enabled, and
the keyword FIMGINT determines the number of time-marching iterations
between image captures. Additional details concerning these input �le key-
words are available in Section 3.6.

10.2 Graphics Window Operation

Once the graphics window has been initiated on the local display, and the
initial data has been plotted, the program continues and the graphics display
data are updated every FGRAFINT iterations. This process will continue
until the program terminates, or until the user interrupts the process by
pressing the left mouse button once with input focus directed to the graph-
ics display window. A short time later, (the delay may be quite long for a
network which is burdened), the graphics display will freeze, and the com-
putational portions of the program will be suspended in order to permit the

ADPAC08 Interactive Graphics Display 333

SGI

ADPAC Interactive Graphics Display
Computer Network Configuration Options

///
///
///
SGI

SGI

///
///
///SGI SGI

///
///
///SGI

SGI

///
///
///
SGI

ADPACexecution and graphics

display on Silicon Graphics Workstation

ADPACexecution on

remote (non−Silicon Graphics)
Computer

Graphics display on a network−connected
Silicon Graphics Workstation

Ethernet

Graphics Transmission via X−Windows

Display System

/

//
//
//
//
// Graphics display on a network−connected

Silicon Graphics Workstation

ADPACexecution on

Silicon Graphics Workstation

(AGTPLT−LCLmust be running on

this machine)

(Code compiled with CGL

libraries)

(Code compiled with graphics option)

(Code compiled with graphics option)

Graphics Transmission via UNIX socket communication

Figure 10.1: ADPAC08 Interactive Graphics Display Network Con�guration
Options

334 ADPAC08 Interactive Graphics Display

user to interactively translate, rotate, or scale the graphics image to their
liking. When the display has been frozen, the viewpoint of the display may
be altered by one of several mouse controls. The left mouse button controls
rotation, the right mouse button controls translation, and the middle mouse
button controls scaling (zoom in, zoom out). The controlling mouse move-
ments are illustrated in Figure 10.2. The mouse-directed viewpoint controls
are identical to those used in PLOT3D [11]. Once the viewpoint has been
altered, program control is returned to ADPAC08 by hitting the ENTER key
on the keyboard with input focus directed to the graphics window. At this
point, the code will then return to the process of performing time-marching
iterations, with periodic updating of the graphics screen.

It is also possible for the user to change the plotting function by entering
any one of the following characters with input focus directed to the graphics
window at any time during the process:

Key Result

p Set
ow function to pressure contours

2 Set
ow function to velocity vectors

The surfaces plotted by the interactive graphics display is currently hard-
wired in the code. A wiremesh representation and the corresponding surface
contours are generated for the i=1, j=1, and k=1 mesh surfaces. This re-
striction could be removed in future developments.

10.3 AGTPLT-LCL Program Description

The program AGTPLT-LCL is the receiving program for local graphics dis-
play of an ADPAC08 job running on a remote, network-connected computing
platform. The AGTPLT-LCL program is a modi�ed version of the NASA-
AMES developed PLOT3D-LCL program. This program can only be run
on a Silicon Graphics Workstation running at level 4.0.1 (or above) of the
IRIX operating system. As such, compilation of the AGTPLT-LCL program
has no options, and is performed simply by executing the command make
in the AGTPLT-LCL source directory. Once initiated, the AGTPLT-LCL

ADPAC08 Interactive Graphics Display 335

Zoom Out
(Shrink)

Zoom In
(Enlarge)

Screen
Translate

Object
Rotate

ADPAC Interactive Graphics Display Mouse Control

Figure 10.2: ADPAC08 Interactive Graphics Display Mouse Control

336 ADPAC08 Interactive Graphics Display

program waits for an outside process from ADPAC08 to communicate with
the local workstation, and graphics commands received from the remote job
are displayed locally.

An important consideration in setting up a remote calculation with local
graphics display using AGTPLT-LCL is the manner in which the local dis-
play is de�ned in the calculation. The CGL libraries used to permit the
network graphics instructions require an internet network address in order
to properly transmit the graphics commands to the correct destination. This
de�nition should be provided in the standard input �le following the normal
keyword parameters (see Section 3.6 for a sample �le and keyword de�ni-
tions). At the end of the standard input keyword data, the user should use
an ENDINPUT statement to terminate the normal input stream. The
ENDINPUT statement should then be followed by two blank lines, and
then a line containing the destination network address of the local Silicon
Graphics display device. This speci�cation will ultimately be read by the
CGL libraries in setting up the network connection.

The procedure to set up this network-connected graphics display option
would be to start the job on the remote machine, and then immediately
start the AGTPLT-LCL program on the local display. As long as the correct
network address has been entered in the case.input �le, then the remote
program should begin communicating with the AGTPLT-LCL program, and
the local graphics window will begin displaying the graphics instructions
speci�ed by the remote computing program.

Chapter 11

ADPAC08 TOOL PROGRAMS
DESCRIPTION

The standard distribution for the ADPAC08 program includes a number of
tool programs designed to assist in examining and manipulating data gen-
erated for an ADPAC08 solution. Although running these programs is gen-
erally self-explanatory, a brief description is provided below to outline the
function of each tool program.

11.1 ADPERF Tool Program Description

The ADPERF tool program was designed to provide a simple post pro-
cessing program for computing overall integrated thrust and power coe�-
cients for unducted fan (propeller) calculations based on a simple H-type
mesh discretization strategy (see Standard Con�guration #1 in Chapter
5). Upon execution, the ADPERF program asks the user to input the
name of the ADPAC08 mesh and restart �les for the run of interest. The
ADPERF program then opens and reads both �les, and attempts to esti-
mate the number of blades in the propeller which the user must then verify
(presumably the mesh represents only a single blade passage of the over-
all geometry). Following this, the ADPERF program asks for the value of
the ADPAC08 nondimensional parameters RHO0 and OMEGA. These val-

337

338 ADSTAT Tool Program Description

ues are identi�ed in the ADPAC08 output �le under the following heading:

non-dimensional initial values calculated as:

**

rho0 (initial density) = .8498 <-----------

u0 (initial axial velocity) = .6643

v0 (initial radial velocity) = .0000

w0 (initial theta velocity) = .0000

ei0 (initial internal energy) = 2.5630

h0 (initial enthalpy) = 3.5000

p0 (initial pressure) = .7962

t0 (initial temperature) = .9370

dmu0 (initial viscosity) = .0000

omega (rotational speed) = -.0096 <-----------

The �nal parameter to be entered is the propeller diameter in grid units (if
the mesh is in feet, enter the propeller diameter in feet). Following this, the
ADPERF program will compute the propeller power and thrust coe�cients
based on blade static pressure loading.

11.2 ADSTAT Tool Program Description

The ADSTAT tool program was designed to provide statistical information
about a mesh or
ow (PLOT3D output) �le from an ADPAC08 run. Upon
execution, the ADSTAT program asks the user to select whether information
about a mesh �le (m) or
ow �le (f) is desired. In either case, the user is then
asked to input the appropriate mesh or
ow �le name. If the mesh �le option
is selected, the ADSTAT program open the mesh �le and reports the number
of mesh blocks contained within the �le, as well as the individual mesh block
sizes. The ADSTAT program also computes the maximum allowable number
of multigrid levels (based on mesh size alone) which can be used for an
ADPAC08 run. In addition, the ADSTAT program computes and reports the
minimum required ADPAC08 array size parameters for all allowable number
of multigrid levels. This capability is the most useful feature of the ADSTAT

AOA2AXI Tool Program Description 339

program. If the
ow �le option is selected, in addition to the above, the extra

ow �le data (standard in the PLOT3D �le format) is also reported for each
block (normally this includes the Mach number, angle of attack, reynolds
number, and time).

11.3 AOA2AXI Tool Program Description

The AOA2AXI tool program was designed to compute an axisymmetric av-
erage of a 3-D cylindrical coordinate system solution. The program is re-
stricted to H-type meshes similar to standard con�gurations #1-3 and in
Chapter 5 which possess uniform axisymmetric projections on each mesh
plane in the circumferential direction (this simpli�es the averaging process).
When running AOA2AXI, the user is requested to enter the 3-D mesh and

ow (PLOT3D format) �le names. Then, the user is o�ered the option of
redimensionalizing the data, and �nally, the user is requested to enter the 2-D
axisymmetric mesh and
ow (PLOT3D format) �le names. The AOA2AXI
code computes the axisymmetric average of the 3-D mesh and
ow �le data
and stores the result in the 2-D axisymmetric mesh and
ow �les. These data
may then be used with PLOT3D and other graphics visualization tools to
examine the axisymmetric average of the 3-D solution.

11.4 PLOT3D Tool Programs Description

A number of tool programs originally generated for the PLOT3D program
are included with the ADPAC08 distribution because of their usefulness in
manipulating ADPAC08 mesh and
ow (PLOT3D output format) �les. A
brief description of these codes is given below. It should be noted that
most of these programs are designed to deal with unformatted �les, rather
than the ADPAC08 standard binary format. Fortunately, the PLOT3D pro-
gram can be used to convert from ADPAC08 binary to unformatted, and the
MAKEADGRID program may be used to convert from unformatted format
to ADPAC08 binary.

340 PLOT3D Tool Programs Description

� CHOPQ Cut a subset out of a (3D, single grid) PLOT3D Q �le and
write it out as a new Q �le.

� CHOPX Cut a subset out of a (3D, single grid) PLOT3D XYZ �le
and write it out as a new XYZ �le.

� CHOPXBCut a subset out of a (3D, single grid) PLOT3D XYZ+IBLANK
�le and write it out as a new XYZ+IBLANK �le.

� COMBINEQ Combine several (3D, single grid) PLOT3D Q �les into
a new multiple grid Q �le.

� COMBINEX Combine several (3D, single grid) PLOT3D XYZ �les
into a new multiple grid XYZ �le.

� COMBINEXBCombine several (3D, single grid) PLOT3D XYZ+IBLANK
�les into a new multiple grid XYZ+IBLANK �le.

� IJK Generate a (3D, single grid) PLOT3D XYZ �le which is simply
the computational grid, i.e. (x,y,z)=(i,j,k). Good for looking at
ow
quantities in the computational domain.

� INT3D Interpolate a (3D, single grid) PLOT3D Q �le from one grid
onto another. Old and new XYZ �les may have IBLANK. Various
options available on what to do if a new grid point isn't found within
the old grid. Uses trilinear interpolation.

� MIRRORQ Flip a (3D, single grid) PLOT3D Q �le about the x-, y-,
or z-axis.

� MIRRORX Flip a (3D, single grid) PLOT3D XYZ �le about the x-,
y-, or z-axis.

� PROPER2D Perform 2D grid line crossing check on a (2D, single
grid) PLOT3D XYZ �le.

� PROPER3D Perform tetrahedron decomposition cell volume check
on a (3D, single grid) PLOT3D XYZ �le.

� PROPER3DNPerform tetrahedron decomposition grid crossing check
on a (3D, single grid) PLOT3D XYZ �le.

PLOT3D Tool Programs Description 341

� REFINEX Generate a new (3D, single grid) PLOT3D XYZ �le which
is an integer re�nement of an existing grid �le. Uses parametric cubic
interpolation.

� ROTATEX Rotate a (3D, single grid) PLOT3D XYZ �le about the
x-, y-, or z-axis.

� SCALEX Scale a (3D, single grid) PLOT3D XYZ �le.

� SCALEX Scale a (3D, single grid) PLOT3D XYZ+IBLANK �le.

� SPLITQ Split a (3D) multiple grid PLOT3D Q �le into separate single
grid Q �les. Can skip grids if desired.

� SPLITX Split a (3D) multiple grid PLOT3D XYZ �le into separate
single grid XYZ �les. Can skip grids if desired.

� SPLITXB Split a (3D) multiple grid PLOT3D XYZ+IBLANK �le
into separate single grid XYZ+IBLANK �les. Can skip grids if desired.

� TRANSLATEX Translate a (3D, single grid) PLOT3D XYZ �le.

� TRANSLATEXBTranslate a (3D, single grid) PLOT3D XYZ+IBLANK
�le.

The UNIX make command may be used to compile and link the PLOT3D
tools as follows:

2xxx/3xxx: make -f Makefile.i2

CRAY 2: make -f Makefile.c2

VAX/VMS: @MAKEFILE.VMS

342 PLOT3D Tool Programs Description

Bibliography

[1] Hall, E. J. and Delaney, R. A., \Investigation of Advanced Counterro-
tation Blade Con�guration Concepts for High Speed Turboprop Sys-
tems: Task V - Unsteady Counterrotation Ducted Propfan Analysis,
Final Report", NASA CR 187126, NASA Contract NAS3-25270, 1992.

[2] Hall, E. J., Delaney, R. A., and Bettner, J. L., \Investigation of Ad-
vanced Counterrotation Blade Con�guration Concepts for High Speed
Turboprop Systems: Task II - Unsteady Ducted Propfan Analysis, Fi-
nal Report", NASA CR 187106, NASA Contract NAS3-25270, 1991.

[3] Hall, E. J., Delaney, R. A., and Bettner, J. L., \Investigation of Ad-
vanced Counterrotation Blade Con�guration Concepts for High Speed
Turboprop Systems: Task II - Unsteady Ducted Propfan Analysis,
Computer Program Users Manual", NASA CR 187105, NASA Con-
tract NAS3-25270, 1991.

[4] Rao, K. V., and Delaney, R. A., 1990, \Investigation of Unsteady Flow
Through a Transonic Turbine Stage: Part I- Analysis", AIAA Paper
90-2408.

[5] Jorgenson, P. C. E., and Chima, R. V., \An Unconditionally Stable
Runge-Kutta Method for Unsteady Flows," AIAA Paper 89-0205, 1989.

[6] Adamczyk, J. J., \Model Equation for Simulating Flows in Multistage
Turbomachinery," ASME Paper 85-GT-226, 1985.

[7] Dawes, W.N., \Multi-Blade Row Navier-Stokes Simulations of Fan By-
pass Con�gurations", ASME Paper 91-GT-148, 1991.

343

344 PLOT3D Tool Programs Description

[8] Crook, A. J., and Delaney, R. A., \Investigation of Advanced Coun-
terrotation Blade Con�guration Concepts for High Speed Turboprop
Systems: Task IV - Advanced Fan Section Analysis, Final Report",
NASA CR 187128, NASA Contract NAS3-25270, 1992.

[9] Rai, M. M., \Unsteady Three-Dimensional Navier-Stokes Simulations
of Turbine Rotor-Stator Interaction," AIAA Paper 87-2058, 1987.

[10] Whipple, D., \BDX-Binary Data Exchange Preliminary Information",
NASA-Lewis Research Center, 1989.

[11] Walatka, P. P., and Buning, P. G., \PLOT3D User's Manual,", rough
draft for NASA TM, 1988.

[12] Plessel, Todd, \SURF User's Guide,", NASA Ames Research Center,
1988.

[13] Walatka, P. P., and Buning, P. G., \FAST", NASA Ames Research
Center, 1990.

[14] Hall, E. J., Delaney, R. A., and Bettner, J. L., \Investigation of Ad-
vanced Counterrotation Blade Con�guration Concepts for High Speed
Turboprop Systems: Task I - Ducted Propfan Analysis", NASA CR
185217, NASA Contract NAS3-25270, 1990.

[15] Crook, A. J., and Delaney, R. A., \Investigation of Advanced Counter-
rotation Blade Con�guration Concepts for High Speed Turboprop Sys-
tems: Task III - Advanced Fan Grid Generation", NASA CR 187129,
NASA Contract NAS3-25270, 1991.

[16] Arnone, Andrea, Notes on the Use of the TRAF Codes. Department
of Energy Engineering, University of Florence, and Institute for Com-
putational Mechanics in Propulsion, NASA Lewis Research Center,
November, 1992.

[17] Hall, E. J., Topp, D. A., Heidegger, N. J., and Delaney, R. A., \Investi-
gation of Advanced Counterrotation Blade Con�guration Concepts for
High Speed Turboprop Systems: Task VII - Unsteady Inlet Distortion
Analysis", to be published.

PLOT3D Tool Programs Description 345

[18] Quealy, A., Cole, G., and Blech, R., \Portable Programming on Par-
allel/Network Computers Using the Application Portable Parallel Li-
brary (APPL)", NASA TM-106238, July, 1993.

346 PLOT3D Tool Programs Description

Appendix A

ADPAC08 DISTRIBUTION
AND DEMONSTRATION
INSTRUCTIONS

A.1 Introduction

This appendix describes the commands necessary to extract the source code
and demo �les from the ADPAC08 standard distribution and run a complete
test case for a ducted fan employing multiple blade rows. The standard AD-
PAC08 distribution is a compressed tar �le which can be decoded into the
various parts by a sequence of commands on any standard UNIX system.
The sequence listed below is intended to guide the user through the setup
from the standard distribution up to and including a complete demonstra-
tion of a calculation for a ducted propfan employing multiple blade rows.
The command sequence listed below should work on most systems employ-
ing the UNIX operating system. Since portions of this process are inher-
ently machine-dependent, the exact commands listed here are for a Silicon
Graphics Workstation running the IRIX Operating System, Revision 4.0.1.
Alternate commands will be listed when a signi�cant machine dependence
exists.

347

348 ADPAC08 Distribution and Demonstration Instructions

A.2 Extracting the Source Files

The ADPAC08 programs are distributed as a compressed tar �le named

adpac08.tar.Z

This tar �le requires roughly 22.0 megabytes of disk space. It should be pos-
sible to extract and run the code on any standard UNIX system from this
distribution �le. The �rst step necessary to extract the ADPAC08 programs
is to uncompress the tar �le with the command:

uncompress adpac08.tar.Z

This operation essentially replaces the compressed �le adpac08.tar.Z with an
uncompressed �le adpac08.tar. The uncompressed tar �le requires approxi-
mately 41.0 megabytes of disk space.

The next step is to extract the individual �les and directories from the ad-
pac08.tar �le. The tar command will create a subdirectory named adpac08
in the current directory, so it is up to the user to move the adpac08.tar �le
to a suitable initial directory before extracting the embedded subdirectories.
Once the tar �le is properly placed, the ADPAC08 distribution may be ex-
tracted with the command

tar xvof adpac08.tar

(On some systems tar xvf adpac08.tar may be su�cient.) Execution of
the UNIX list command ls -l will verify that the adpac08 directory has been
created. The complete extraction process will require about 90.0 Megabytes
of disk space (to hold the adpac08.tar �le and the extracted contents).

The uncompress and tar steps can be combined in a single operation on most
UNIX systems by issuing the command

ADPAC08 Distribution and Demonstration Instructions 349

zcat adpac08.tar.Z j tar xvf

This combined operation conserves overall disk space requirements during
the extraction process.

A.3 Compiling the Source Code

After extracting the source �les, the user is naturally interested in compiling
the source �les for execution. A UNIX-compatible Make facility is provided
for each of the ADPAC08 programs. The Make�le which governs the com-
pilation process is necessarily machine-dependent and requires that the user
select from one of a number of precon�gured systems. The Make command is
fully described in Section 3.4. If no option is speci�ed in the make command,
then the standard UNIX compilation is performed.

In order to begin the compilation, it is �rst necessary to enter the adpac08
directory with the command:

cd adpac08

At this point, several �les and directories will be available. By entering the
UNIX command ls -l, a listing of the individual directories can be obtained.
The output of the ls command will look something like:

README demo/ manual/ report/ src/

A description of each of these listings is given below:

README This �le is a general description of the contents of the direc-
tory.

demo This directory contains several geometry and
ow input �les
for generating sample runs of the ADPAC08 codes.

manual This directory contains the LaTeX source code for this manual.
If LaTeX is installed on your system, it is possible to reproduce

350 ADPAC08 Distribution and Demonstration Instructions

this document (excluding �gures) with the command latex
manual. The resulting device independent �le manual.dvi
may then be converted to PostScript or previewed on screen
through a number of widely available routines.

report This directory contains the LaTeX source code for the �nal
report outlining the technical details of the ADPAC08 codes.
If LaTeX is installed on your system, it is possible to reproduce
the �nal report (excluding �gures) with the command latex
report. The resulting device independent �le �nalreport.dvi
may then be converted to PostScript or previewed on screen
through a number of widely available routines.

src This directory contains all the FORTRAN source code for the
ADPAC08 programs including SETUP, ROTGRID,MAKEAD-
GRID, and AGTPLT-LCL.

It is now possible to compile the ADPAC08 code by issuing the commands

cd src/adpac

make

On a Cray, the commandmake cray is appropriate, while on an IBM work-
station make aix is appropriate. Other compilation options are available
by typing make help. The compilation of the executable module for AD-
PAC08 will require roughly 20 megabytes of disk space.

A.4 Running the Distribution Demonstration

Test Cases

Once themake facility has properly completed compiling the ADPAC08 source
code, it is possible to run the test cases provided with the standard distri-
bution. It is recommended that the sample cases be tested to verify proper
compilation and extraction of the ADPAC08 distribution.

ADPAC08 Distribution and Demonstration Instructions 351

In order to run the demonstration cases, it is necessary to begin in the demo
directory. From the ADPAC08 source code directory, the demo directory
may be entered by issuing the command

cd ../../demo

Several test cases are provided with the standard distribution to illustrate the
operation of the code for many di�erent applications. The commands needed
to run any demo are similar, so only the case listed under the directory nasa
will be explained in detail here.

After entering the demo directory, an ls command will indicate that the fol-
lowing subdirectories (and possibly others) are available:

nasa/

These subdirectories contain the ducted fan demonstration case described
above, as well as a sample case (at least partially) for each of the 10 stan-
dard con�gurations described in Chapter 5. To run the multiple blade row
ducted fan demonstration case, enter the nasa subdirectory by issuing the
command cd nasa. Now, the ls command reveals:

nasa.input nasa.boundata nasa.mesh

nasa.output.save nasa.converge.save

The nasa directory contains the data to run a test case for the NASA 1.15
pressure ratio ducted fan. This geometry is representative of a 25:1 bypass ra-
tio turbofan engine fan, and has been tested extensively both experimentally
and numerically. This test case employs two blade rows (a rotor and a stator)
and the multiple blade rows are treated using the circumferential averaging
technique described in Section 2.2. The mesh corresponds to Standard Con-
�guration #10, and the mesh and appropriate mesh indices are illustrated
in Figure A.1. The multiple-block mesh for this test case is contained in
nasa.mesh, and may be viewed using the PLOT3D program. The
ow Mach
number is 0.75, and the calculation is performed at 100% design speed (9167

352 ADPAC08 Distribution and Demonstration Instructions

rpm). For the purposes of this demonstration, an inviscid calculation using
3 levels of multigrid has been con�gured.

The next step in the solution process is to simply run the ADPAC08 program
for this case. The standard input �le nasa.input and the boundary data �le
nasa.boundata are provided to run the program (these �les are listed in
this manual as sample �les in Sections 3.6 and 3.7). The steady
ow solution
is generated by issuing the command

../../src/adpac08/adpac <nasa.input >nasa.output

The computation time required to generate the steady state solution may
take up to four hours on a workstation-class computer. Once the steady
ow
solution has been generated, the ls command will reveal the following �les:

nasa.restart.new nasa.p3drel nasa.p3dabs

nasa.converge nasa.input nasa.output

nasa.converge.save nasa.output.save

The �le nasa.restart.new contains the restart �le necessary to continue this
run from the point of termination. The �les nasa.p3dabs and nasa.p3drel
contain the absolute and relative
ow PLOT3D
ow variable information,
respectively. The �le nasa.output is the new standard output �le, and should
be compared with the �le nasa.output.save to verify that the program has
performed the calculation correctly. It may be of interest to examine these
steady
ow results with PLOT3D at this point (see Ref. [11] for details).

A plot of the convergence history for this case is given in Figure A.2. The
"jumps" in the residual history are a result of the "full" multigrid startup
procedure, and should not be considered inappropriate.

The standard output �le nasa.output should be compared with the list-
ing provided in Section 3.10 to make sure that the code has performed the
calculation properly.

ADPAC08 Distribution and Demonstration Instructions 353

NASA 1.15 Pressure Ratio Fan Test Case Description

Axisymmetric Mesh View

Mesh Block Structure

Block #1

Block #2 Block #4

Block #3

i=81 i=113 i=17 i=49

i=33

i=81

(129x17x17)

(129x17x17)

(97x17x17)

(97x17x17)

Figure A.1: NASA 1.15 Pressure Ratio Fan Test Case

354 ADPAC08 Distribution and Demonstration Instructions

NASA 1.15 Pressure Ratio Fan Test Case

0 100 200 300

Iteration Number

-8

-7

-6

-5

-4

-3

-2

L
og

 1
0

(R
M

S
 R

es
id

ua
l)

Convergence History
ADPAC-AOACR

Figure A.2: ADPAC08 Convergence History for NASA 1.15 Pressure Ratio
Fan Test Case

REPORT DOCUMENTATION PAGE

2. REPORT DATE

19. SECURITY CLASSIFICATION
 OF ABSTRACT

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Form Approved

OMB No. 0704-0188

12b. DISTRIBUTION CODE

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

8. PERFORMING ORGANIZATION
 REPORT NUMBER

5. FUNDING NUMBERS

3. REPORT TYPE AND DATES COVERED

4. TITLE AND SUBTITLE

6. AUTHOR(S)

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

13. ABSTRACT (Maximum 200 words)

14. SUBJECT TERMS

17. SECURITY CLASSIFICATION
 OF REPORT

16. PRICE CODE

15. NUMBER OF PAGES

20. LIMITATION OF ABSTRACT

Unclassified Unclassified Unclassified

National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135– 3191

Final Contractor Report
1. AGENCY USE ONLY (Leave blank)

NASA CR–195360

E–9025

September 1994

Allison Engine Company
P.O. Box 420
Indianapolis, Indiana 46206–0420

WU–538–03–11
C–NAS3–25270

Unclassified -Unlimited
Subject Categories 07 and 34

Investigation of Advanced Counterrotation Blade Configuration Concepts for
High Speed Turboprop Systems
Task 8–Cooling Flow/Heat Transfer Analysis
User's Manual

E.J. Hall, D.A. Topp, N.J. Heidegger, and R.A. Delaney

Turbomachinery; Fan; Duct; Navier-Stokes; Multiple block; ADPAC

Project Manager, Christopher J. Miller, Propulsion Systems Division, organization code 2770, (216) 433–6179.

The focus of this task was to validate the ADPAC code for heat transfer calculations. To accomplish this goal, the
ADPAC code was modified to allow for a Cartesian coordinate system capability and to add boundary conditions to
handle spanwise periodicity and transpiration boundaries. This User's Manual describes how to use the ADPAC code as
developed in Task 5, NAS3–25270, and including the modifications made to date in Tasks 7 and 8, NAS3–25270.

362

A16

